同一进程中的线程究竟共享哪些资源

转载 2012年03月25日 15:27:27

  线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。     进程拥有这许多共性的同时,还拥有自己的个性。有了这些个性,线程才能实现并发性。这些个性包括:

  1.线程ID

  每个线程都有自己的线程ID,这个ID在本进程中是唯一的。进程用此来标   识线程。    2.寄存器组的值

  由于线程间是并发运行的,每个线程有自己不同的运行线索,当从一个线   程切换到另一个线程上时,必须将原有的线程的寄存器集合的状态保存,以便   将来该线程在被重新切换到时能得以恢复。    3.线程的堆栈

  堆栈是保证线程独立运行所必须的。

  线程函数可以调用函数,而被调用函数中又是可以层层嵌套的,所以线程   必须拥有自己的函数堆栈,使得函数调用可以正常执行,不受其他线程的影   响。

  4.错误返回码

  由于同一个进程中有很多个线程在同时运行,可能某个线程进行系统调用   后设置了errno值,而在该线程还没有处理这个错误,另外一个线程就在此时   被调度器投入运行,这样错误值就有可能被修改。

  所以,不同的线程应该拥有自己的错误返回码变量。

  5.线程的信号屏蔽码

  由于每个线程所感兴趣的信号不同,所以线程的信号屏蔽码应该由线程自   己管理。但所有的线程都共享同样的信号处理器。

  6.线程的优先级

  由于线程需要像进程那样能够被调度,那么就必须要有可供调度使用的参   数,这个参数就是线程的优先级。

原文链接: http://java.chinaitlab.com/advan...

相关文章推荐

同一进程中的线程究竟共享哪些资源

线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。     进程...

同一进程中的线程究竟共享哪些资源

转载地址:http://www.cnblogs.com/baoendemao/p/3804677.html 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度...

同一进程中的线程究竟共享哪些资源

线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。    ...

同一进程中的线程究竟共享哪些资源

线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。   ...

同一进程中的线程究竟共享哪些资源

线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。    ...

同一进程中线程究竟享有线程的什么资源

线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。   ...

同一进程中的线程可以共享哪些资源

1.用堆和栈分配一个变量可能在以后的执行中产生意想不到的结果,而这个结果的表现就是内存的非法被访问,导致内存的内容被修改。 理解这个现象的两个基本概念是:在一个进程的线程共享堆区,而进程中的线程各自...

同一进程中的线程可以共享哪些资源

1.用堆和栈分配一个变量可能在以后的执行中产生意想不到的结果,而这个结果的表现就是内存的非法被访问,导致内存的内容被修改。 理解这个现象的两个基本概念是:在一个进程的线程共享堆区,而进程中的线程各自...

同一进程不同线程之间的资源共享与独享

同一进程不同线程之间的资源共享与独享 线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录...
  • htq__
  • htq__
  • 2016-03-07 21:41
  • 1931

同一进程中线程共享和独占的资源

统一进程中的线程共享的资源包括: 1. 进程代码段 2. 进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯) 3. 进程打开的文件描述符 4. 信号的处理器 5. 进程的当前目录 6...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)