动态规划(一) —— 递归求解

原创 2014年03月10日 12:25:14

一 . 斐波那契数列

题目来源九度OJ:http://ac.jobdu.com/problem.php?pid=1205

题目描述:

N阶楼梯上楼问题:一次可以走两阶或一阶,问有多少种上楼方式。(要求采用非递归)

输入:

输入包括一个整数N,(1<=N<90)。

输出:

可能有多组测试数据,对于每组数据,
输出当楼梯阶数是N时的上楼方式个数。

样例输入:
4
样例输出:
5

定义F[n]为当台阶总数为n时上台阶方式的总数,易得F[1] =  1 ,F[2] = 2。

当n > 2 时,考虑每种方式的最后一步,显然最后一步只有2种方式,上1阶或上2阶,而每种方式对应的种类都是1。

当最后一步采用的是上1阶的方式,则 F[n] 退化成与 F[n - 1] 等价。

同理,若最后一步采用的是上2阶的方式,则 F[n] 退化成与 F[n - 2] 等价。

综上,得出关于 F[n] 的递推公式:F[n] = F[n-1] + F[n-2]   ( F[1] = 1 , F[2] = 2 )

#include <stdio.h>
long long F[91];
int main(){
    F[1] = 1;
    F[2] = 2;
    for(int i = 3 ; i <= 90 ; i ++){
        F[i] = F[i - 1] + F[i - 2];    
    }
    int n;
    while(scanf("%d",&n) != EOF){
        printf("%lld\n",F[n]);    
    }
    return 0;    
}



二 .  错排公式

题目来源九度OJ:http://ac.jobdu.com/problem.php?pid=1451

题目描述:

大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

输入:

输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。

输出:

对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。

样例输入:
2
3
样例输出:
1
2

同样用 F[n] 表示 n 个信封错装的方式总数,容易得到 F[1] = 0 , F[2] = 1。

当 n > 2 时,讨论 F[n] 的递推公式。

首先可以确定,n号信封所装的信是原本属于编号1 到 n - 1 其中一个信封的,现在假设这个信的编号是m。即m号信装在n号信封中。

再者可以确定,属于n号信封的信也必定被装在编号1到n - 1其中一个信封中,现在假设这个信封的编号是k。即n号信装在k号信封中。

1. 若m == k,则交换这两个信封可以得到2封装对的信,而其他n - 2个信封均装错,此时F[n] 与 F[n - 2] 等价。

2. 若m != k,则交换这两个信封时,只有n号信封能得到正确的信,而其他n - 1个信封的信均装错,此时F[n] 与 F[n - 1] 等价。

由于上面的m取值范围从1到n - 1,故有n - 1种可能取值,即上面的每种等价情况均有n - 1种。

综上,得到F[n]的递推公式:F[n] = (n-1) * F[n-1] + (n-1) * F[n-2]     ( F[1] = 0 , F[2] = 1) 

#include <stdio.h>
long long F[21];
int main(){
    F[1] = 0;
    F[2] = 1;
    for(int i = 3 ; i <= 20; i ++){
        F[i] = (i - 1) * F[i - 1] + (i - 1) * F[i - 2];    
    }
    int n;
    while(scanf("%d",&n) != EOF){
        printf("%lld\n",F[n]);    
    }
    return 0;    
}





相关文章推荐

最长公共子序列求解:递归与动态规划方法

http://www.cnblogs.com/xudong-bupt/archive/2013/03/15/2959039.html 最长公共子序列,是指多个字符串可具有的长度最大的公共的子...

最长公共子序列求解:递归与动态规划方法

在做OJ题目的时候,经常会用到字符串的处理。例如,比较二个字符串相似度。这篇文章介绍一下求两个字符串的最长公共子序列。   一个字符串的子序列,是指从该字符串中去掉任意多个字符后剩下的字符在不改变顺...

fibonacci数列的两种求解方式:基础递归VS动态规划

fibonacci数列的两种求解方式:基础递归VS动态规划

LeetCode Climbing Stairs 递归求解和动态规划法

分类: Algorithm算法 2013-12-21 08:13 4154人阅读 评论(2) 收藏 举报 LeetCodeClimbing Stairs递归求解动态规划法 ...

动态规划递归求解LCS长度

动态规划递归求解LCS长度

LeetCode Climbing Stairs 递归求解和动态规划法

简单题目,相当于fibonacci数列问题,难点就是要会思维转换,转换成为递归求解问题,多训练就可以了。 所以这种类型的题目相对于没有形成递归逻辑思维的人来说,应该算是难题。 我的想法是: 每次有两种...
  • kenden23
  • kenden23
  • 2013年12月21日 08:13
  • 16861

9.9递归和动态规划(七)——实现许多图片编辑软件都支持的“填充颜色”功能

/**  * 功能:实现许多图片编辑软件都支持的“填充颜色”功能。  * 给定一个屏幕(以二维数组表示,元素为颜色值)、一个点和一个新的颜色值,将新颜色填入这个店的周围区域,知道原来的颜色值全都改...

9.9递归和动态规划(一)——小孩上楼梯的方式的种类

/**  * 功能:有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。计算小孩上楼梯的方式有多少种。  */ 两种方法: 方法一: //递归法 /** ...

9.9递归和动态规划(九)——N皇后

/**  * 功能:打印八皇后在8*8棋盘上的各种摆法,其中每个皇后都不同行、不同列,也不在对角线上。  * 这里的“对角线”指的是所有的对角线,不只是平分整个棋盘的那两条对角线。  */ st...

9.9递归和动态规划(六)——打印n对括号的全部有效组合(即左右括号正确配对)

/**  * 功能:打印n对括号的全部有效组合(即左右括号正确配对)。  */ 两种方法: 方法一: /** * 思路:在括号的最前面或者原有的每对括号里面插入一对括号。至于其他任意位置,比如...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:动态规划(一) —— 递归求解
举报原因:
原因补充:

(最多只允许输入30个字)