模拟退火算法解决TSP问题之大白话【转】

转载 2011年01月14日 09:20:00

    这是这次算法课设的时候无意间发现的一个不错的资料,使用白话讲述模拟退火算法。这是转来的一篇博文,转载地址见最下方。

优化算法入门系列文章目录(更新中):

1. 模拟退火算法

2. 遗传算法

一. 爬山算法 ( Hill Climbing )

         介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

         爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

图1


二. 模拟退火(SA,Simulated Annealing)思想

         爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

         模拟退火算法描述:

         若J( Y(k+1) )>= J( Y(k) )  (即移动后得到更优解),则总是接受该移动

         若J( Y(k+1) )< J( Y(k) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/kT )

其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

关于爬山算法与模拟退火,有一个有趣的比喻:

爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

下面给出模拟退火的伪代码表示。


三. 模拟退火算法伪代码


旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

1. 产生一条新的遍历路径P(k+1),计算路径P(k+1)的长度L( P(k+1) )

2. 若L(P(k+1)) < L(P(k)),则接受P(k+1)为新的路径,否则以模拟退火的那个概率接受P(k+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

产生新的遍历路径的方法有很多,下面列举其中3种:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

3. 随机选择3个节点i,j,k,然后将节点i与j间的节点移位到节点k后面。


五. 算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

from here : http://www.cnblogs.com/heaad/   转载请注明

TSP_旅行商问题 - 模拟退火算法(三)

本文基于模拟退火算法,实现了TSP问题的求解,并与蛮力法(DFS)进行比较,综合分析了模拟退火算法的优缺点!此外,本人还整理其他解决TSP问题的算法(蛮力法,动态规划,遗传算法,粒子群算法,人工神经网...
  • Houchaoqun_XMU
  • Houchaoqun_XMU
  • 2017年01月20日 17:47
  • 5209

模拟退火算法解决TSP(旅行商)问题

模拟退火算法解决TSP问题。并java代码实现
  • zgmlovetangli
  • zgmlovetangli
  • 2017年09月04日 16:31
  • 252

模拟退火算法及TSP问题Java源码

  • 2016年12月05日 21:32
  • 6KB
  • 下载

仿真算法实现TSP问题之----模拟退火算法(Java版)

  • 2017年09月28日 18:02
  • 1.71MB
  • 下载

模拟退火算法原理及求解TSP问题的Java实现

详细讲解了模拟退火的物理原理、组合优化问题建模、模拟退火算法的分析、TSP问题的建模、TSP问题求解的Java实现。其中程序部分还附带实现了算法收敛过程的可视化。...
  • tyhj_sf
  • tyhj_sf
  • 2016年12月03日 21:18
  • 779

模拟退火算法的java实现

  • 2016年12月11日 21:25
  • 5KB
  • 下载

基于模拟退火算法求解TSP问题(JAVA)

一、TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他...
  • wangqiuyun
  • wangqiuyun
  • 2013年05月12日 23:08
  • 6696

模拟退火算法解决TSP问题

一、实验目的 1. 了解TSP问题的基本概念,解决TSP问题的难点是什么? 2. 掌握模拟退火算法、遗传算法的基本原理和步骤。 3. 复习VB、VC的基本概念、基本语法和编程方法,并熟练使用VB...
  • oxoxzhu
  • oxoxzhu
  • 2012年11月02日 21:35
  • 9492

模拟退火算法解旅行商(TSP)问题

该帖子的代码主要转自[模拟退火算法]1 该文对模拟退火算法作了较好的分析,不过该文中举例的TSP的代码有一些问题,我对此作了修正,并在文中最后做出解释。 代码如下:#include #inclu...
  • lsldd
  • lsldd
  • 2015年12月18日 17:04
  • 6070

利用模拟退火算法求解TSP问题(C++实现)

/* 利用模拟退火算法求解tsp问题 */ #include"iostream" #include"ctime" #include"cstdio" #include"cstdlib" #include...
  • cighao
  • cighao
  • 2015年10月12日 20:46
  • 3187
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:模拟退火算法解决TSP问题之大白话【转】
举报原因:
原因补充:

(最多只允许输入30个字)