模拟退火算法解决TSP问题之大白话【转】

转载 2011年01月14日 09:20:00

    这是这次算法课设的时候无意间发现的一个不错的资料,使用白话讲述模拟退火算法。这是转来的一篇博文,转载地址见最下方。

优化算法入门系列文章目录(更新中):

1. 模拟退火算法

2. 遗传算法

一. 爬山算法 ( Hill Climbing )

         介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

         爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

图1


二. 模拟退火(SA,Simulated Annealing)思想

         爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

         模拟退火算法描述:

         若J( Y(k+1) )>= J( Y(k) )  (即移动后得到更优解),则总是接受该移动

         若J( Y(k+1) )< J( Y(k) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/kT )

其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

关于爬山算法与模拟退火,有一个有趣的比喻:

爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

下面给出模拟退火的伪代码表示。


三. 模拟退火算法伪代码


旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

1. 产生一条新的遍历路径P(k+1),计算路径P(k+1)的长度L( P(k+1) )

2. 若L(P(k+1)) < L(P(k)),则接受P(k+1)为新的路径,否则以模拟退火的那个概率接受P(k+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

产生新的遍历路径的方法有很多,下面列举其中3种:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

3. 随机选择3个节点i,j,k,然后将节点i与j间的节点移位到节点k后面。


五. 算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

from here : http://www.cnblogs.com/heaad/   转载请注明

模拟退火算法解决TSP问题

模拟退火法 模拟退火法简单解释:为了找出地球上最高的山,一群兔子们开始想办法。首先兔子们用酒将自己灌醉了,它们随机地跳了很长的时间。在这期 间,它们可能走向高处,也可能踏入平地。但是,随着时间...

模拟退火算法解决TSP问题

一、实验目的 1. 了解TSP问题的基本概念,解决TSP问题的难点是什么? 2. 掌握模拟退火算法、遗传算法的基本原理和步骤。 3. 复习VB、VC的基本概念、基本语法和编程方法,并熟练使用VB...
  • oxoxzhu
  • oxoxzhu
  • 2012年11月02日 21:35
  • 9196

模拟退火算法解决TSP问题

  • 2017年04月06日 14:10
  • 3KB
  • 下载

模拟退火算法解决TSP问题

  • 2017年01月17日 21:56
  • 10KB
  • 下载

简要解析模拟退火算法以及利用它求解TSP问题

模拟退火(SA,Simulated Annealing)思想          模拟退火算是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可...

C#模拟退火算法解决TSP问题

  • 2009年06月24日 01:42
  • 61KB
  • 下载

模拟退火算法-TSP问题

求某些最优化问题的最优解是一个极其困难的任务。这是因为当一个问题变得足够大时,我们需要搜索一个巨大数量的可能解,从而找到最优的解决方案。在这种情况下,就不能指望找到一个最优函数在一个合理的时间内解决问...

模拟退火算法解决TSP问题

  • 2013年04月06日 14:45
  • 353KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:模拟退火算法解决TSP问题之大白话【转】
举报原因:
原因补充:

(最多只允许输入30个字)