利用积分图像法快速计算Haar特征

转载 2013年12月04日 17:10:43

申明:本文非笔者原创,原文转载自:http://blog.csdn.net/xiaowei_cqu/article/details/8219324


由于Haar特征是矩形中黑色区域所有像素值的和减去白色区域所有像素值的和。在之前(《计算Haar特征个数》)我们看到,24*24的图片中,有115984个特征,远远大于其像素个数。如果计算每个特征的像素和,计算量会非常大,而且很多次运算是重复的。

Paul Viola提出一种利用积分图像法快速计算Haar特征的方法(《Rapid object detection using a boosted cascade of simple features》)。简单说来,就是先构造一张“积分图”(Integral image),也叫Summed Area Table,之后任何一个Haar矩形特征都可以通过查表的方法(Look Up Table)和有限次简单运算得到,大大减少了运算次数。

将矩形表示为:

其中,x,y表示起点坐标,w,h表示宽,高,a表示角度。

矩形内像素值之和表示为:

0°矩形特征


构造积分图像Summed Area Table


积分图像中,每个点存储是其左上方所有像素之和:

其中I(x,y)表示图像(x,y)位置的像素值。
积分图像可以采用增量的方式计算:

初始边界:SAT(-1,y)=SAT(x,-1)=SAT(-1,-1)=0
所以,只需要对整张图像遍历一次就可以求得这张图的积分图像。

计算Haar矩形特征

如图所示:


利用积分图计算可计算矩形区域内像素和:



所以,无论矩形r的尺寸大小,只需查找积分图像4次就可以求得任意矩形内像素值的和。


45°Rotated矩形特征


构造旋转积分图像Rotated SummedArea Table

 

旋转积分图中,每个点存储是其左上方延伸出的45°区域范围内所有像素之和:


RSAT(x,y)也采用增量方计算得到:


初始边界:RSAT(-1,y)=RSAT(x,-1)=RSAT(x,-2)=0
          RSAT(-1,-1)=RSAT(-1,-2)=0

公式具体示意如下图:



计算Haar矩形特征

同样的方式,可推出每个矩形内像素和的计算公式:

*图太难画了,不清楚的自己在草稿纸上试试吧~

同样的,无论旋转矩形r的尺寸大小,只需要查找积分图像4次就可以求得任意矩形内像素值得和。



相关文章推荐

光流法简单介绍

光流的概念是Gibson在1950年首先提出来的。它是空间运动物体在观察成像平面上的像素运动的瞬时速度,是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系...

一文读懂卷积神经网络

申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional ...

动态规划(Dynamic Programming, DP)简介

动态规划(Dynamic programming,DP)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。 动态规划常常适用于有重叠子问题和最优子结...

利用积分图像法快速计算Haar特征

由于Haar特征是矩形中黑色区域所有像素值的和减去白色区域所有像素值的和。在之前(《计算Haar特征个数》)我们看到,24*24的图片中,有115984个特征,远远大于其像素个数。如果计算每个特征的像...

【图像处理】利用积分图像法快速计算Haar特征

原文:http://blog.csdn.net/xiaowei_cqu/article/details/8219324 由于Haar特征是矩形中黑色区域所有像素值的和减去白色区域所有像素值的和。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)