【线段树】单点更新3

原创 2013年12月06日 09:46:37

/****************************

用线段树求逆序数

对于a1,a2,....an 的逆序数sum

我们求a2,a3,....an,a1的逆序数时,

假设比a1小的数的个数为t,则比a1大的数为n-t-1;

 那么sum=sum+n-2*t-1;

由于这题给出的数据是0~n-1的数,所以不需要离散化,比ai小的数的个数就是ai个

*****************************/


Description

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. 

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following: 

a1, a2, ..., an-1, an (where m = 0 - the initial seqence) 
a2, a3, ..., an, a1 (where m = 1) 
a3, a4, ..., an, a1, a2 (where m = 2) 
... 
an, a1, a2, ..., an-1 (where m = n-1) 

You are asked to write a program to find the minimum inversion number out of the above sequences. 
 

Input

The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1. 
 

Output

For each case, output the minimum inversion number on a single line. 
 

Sample Input

10 1 3 6 9 0 8 5 7 4 2
 

Sample Output

16
 

#include<cstdio>
using namespace std;

const int maxn=5005;

int a[maxn<<2];

void build(int l, int r, int rt)
{
    if(l==r)
    {
        a[rt]=0;
        return;
    }
    int mid=(l+r)>>1;
    build(l, mid, rt<<1);
    build(mid+1, r, rt<<1|1);
    a[rt]=0;
}

void PushUp(int rt)
{
    a[rt]=a[rt<<1]+a[rt<<1|1];
}

void updata(int l, int r, int x, int rt)
{
    if(l==r)
    {
        a[rt]++;
        return;
    }
    int m=(l+r)>>1;
    if(x<=m) updata(l, m, x, rt<<1);
    else updata(m+1, r, x, rt<<1|1);
    PushUp(rt);
}

int Query(int l, int r, int L, int R, int rt)
{
    if(L<=l && r<=R)
    {
        return a[rt];
    }
    int m=(l+r)>>1;
    int ans1=0, ans2=0;
    if(L<=m) ans1+=Query(l, m, L, R, rt<<1);
    if(R>m)  ans2+=Query(m+1, r, L, R, rt<<1|1);
    return ans1+ans2;
}

int main()
{
    int n, i, sum;
    int b[5005];
    while(scanf("%d", &n)!=EOF)
    {
        sum=0;
        build(0, n-1, 1);
        for(i=0; i<n; i++)
        {
            scanf("%d", &b[i]);
            sum+=Query(0, n-1, b[i], n-1, 1);
            updata(0, n-1, b[i], 1);
        }
        int min=sum;
        for(i=0; i<n; i++)
        {
            sum=sum+n-2*b[i]-1;
            if(sum<min)
            min = sum;
        }
        printf("%d\n", min);
    }



    return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

ccnu-线段树-单点更新3-C

C - 单点更新3 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...

HDU 2795 Billboard 线段树单点更新

Billboard Problem Description At the entrance to the university, there is a huge rectangul...

hdu 5316 Magician(2015多校第三场第1题)线段树单点更新+区间合并

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5316 题意:给你n个点,m个操作,每次操作有3个整数t,a,b,t表示操作类型,当t=1时讲a点的值改...

zoj 3633 线段树单点更新 区间最大值

/* 解法是,先把所有数字从小到大排序,相同的按出现的先后顺序排序。 更新时,对于每一个数x,如果前面的y==x的话,那么在线段树中,在x的坐标位置上赋值上y的坐标位置。 查询时,[a,b]就是查询区...

Color the ball - HDU 1556 - 线段树 区间更新单点查询

Color the ball - HDU 1556 - 线段树 区间更新单点查询  国际惯例中文题目不解释,思路直接裸线段树,Lazy思想入门题。  Lazy传送门:延迟更新详解AC代码:// // ...

POJ 2828-Buy Tickets(线段树单点更新-插队)

Buy Tickets Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 19874   A...

CodeForces 332B Maximum Absurdity(线段树单点更新)

题意: 给你一个序列,找两个长度为 k 且没有重合区间的数使得其和最大 解析: 线段树,就是把起点为 i 长度为 k 的和预处理出来,再枚举a,与a线段不重合的,后面的部分用线段树来找最大位置...

Minimum Inversion Number----HDU_1394----线段树之单点更新

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1394 /* Author:Bob Lee 2012.9.24 ================...

HDU 2795 Billboard (线段树单点更新)

Billboard Time Limit: 20000/8000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su...

SYSU 14546 - Excellent Engineers(线段树‘单点更新)

题目: http://soj.sysu.edu.cn/show_problem.php?pid=14546&cid= 题意: n(1~1e5)个人,每个人有三个属性值a,b,c,求出 不存在...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)