Dijkstra算法

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

Dijkstra算法具体步骤:

(1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或 )(若u不是v的出边邻接点)。 
(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 

(4)重复步骤(2)和(3)直到所有顶点都包含在S中。

图解如下:






代码如下:

#include "GraphLink.h"
#include "MinHeap.h"
#include <vector>;
#include <map>;
#include <stack>;
using std::vector;
using std::map;
using std::stack;


class Dist
{
public:
	int index;
	int length;
	int pre;

	bool operator < (const Dist &dist)
	{
		return length < dist.length;
	}

	bool operator <= (const Dist &dist)
	{
		return length <= dist.length;
	}

	bool operator > (const Dist &dist)
	{
		return length > dist.length;
	}

	bool operator >= (const Dist &dist)
	{
		return length >= dist.length;
	}

	bool operator == (const Dist &dist)
	{
		return length == dist.length;
	}
};


//dijkstra算法,其中参数G是图,参数s是源顶点,D是保存最短距离及其路径的数组
void dijkstra(Graph &graph, int s, Dist* &dist)
{
	dist = new Dist[graph.edgesNum()];
	for(int i = 0; i < graph.verticesNum();i++)// 初始化Mark数组、dist数组
	{
		graph.mark[i] = UNVISITED;
		dist[i].index = i;
		dist[i].length = INFINITE;
		dist[i].pre = s;
	}

	dist[s].length = 0;
	MinHeap<Dist> heap(graph.edgesNum());// 最小值堆(minheap),用以存放各点到源点s的length
	heap.insert(dist[s]); //最初是加入源点s,length = 0;

	map<int,int> route;//用以记录前驱顶点、当前顶点关系的map,此map用以保持路径
	for(int i = 0; i < graph.edgesNum();i++)
	{
		
		bool found = false;
		Dist d;

		while(!heap.isEmpty())
		{
			heap.removeMin(d);//length最小值出堆

			if(graph.mark[d.index] == UNVISITED)//找到距离s最近的顶点
			{
				cout<< "vertex index: " <<d.index<<"   ";
				cout<< "vertex pre: " <<d.pre<<"   ";

				if(d.pre == s)
				{
					cout << "route is :" << d.pre << "->" << d.index << "\t";
					route[d.index] = d.pre;
				}
				else
				{
					stack<int> stk;
					route[d.index] = d.pre;
					int previous = d.pre;
					while(previous != s)
					{
						stk.push(previous);
						previous = route[previous];
					}
					stk.push(previous);

					cout << "root is:";
					while(!stk.empty())
					{
						cout << stk.top() << "->";
						stk.pop();
					}

					cout << d.index << "\t"; 
				}
			

				cout<< "V0 --> V" << d.index <<" length: " <<d.length<<endl;
				
				found = true;
				break;
			}
		}


		if(found)
		{
			int v  = d.index;
			graph.mark[v] = VISITED;// 把该点加入已访问组

			// 因为v的加入,需要刷新v邻接点的dist值
			for(Edge edge = graph.firstEdge(v); graph.isEdge(edge); edge = graph.nextEdge(edge))
			{
				if(dist[graph.toVertex(edge)].length > dist[v].length + graph.weight(edge))
				{
					dist[graph.toVertex(edge)].length = dist[v].length + graph.weight(edge);
					dist[graph.toVertex(edge)].pre = v;

					heap.insert(dist[graph.toVertex(edge)]);

					
			
				}
			}
		}
		
	}
}


//图7.19  单源最短路径的示例
int A[N][N] =  {
	//  v0  v1  v2  v3  v4  
/*v0*/	0, 10,  0, 30, 100,
/*v1*/	0,  0, 50,  0,  0, 
/*v2*/	0,  0,  0,  0, 10, 
/*v3*/	0, 10, 20,  0, 60, 
/*v4*/	0,  0,  0,  0,  0, 
};


int main()
{
	GraphLink<ListUnit> graphLink(N);              // 建立图 
	graphLink.initGraph(graphLink, A,N); // 初始化图
	
	Dist *dist;
	int root[N] = {-1};
	dijkstra(graphLink,0,dist);
	system("pause");
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值