机器学习(三):支持向量机

原创 2016年08月30日 16:11:10

支持向量机是一种判别模型,它构建一个超平面使得距离这个超平面最近的点的距离最大。支持向量机的任务是在较低的模型泛化误差下寻找一个合适的超平面。

如果超平面的函数是如下表达式:

那么超平面与数据点(label=1)之间的几何关系为:

定义:几何间隔和函数间隔

因此,转换为带约束的优化问题:

我们无法保证数据是线性可分的,因此需要添加损失和松弛变量:

新的优化问题变成:

我们假设:

那么优化问题将为:

损失函数——Hinge Loss

Q:下面(1)式为什么可以由(2)式表式?

SVM的拉格朗日对偶问题

Q:什么是支持向量以及它的特征是什么?

Q:核的真实目的是什么?(不要告诉我是为了在高维空间线性可分)

机器学习十大算法 支持向量机

  • 2011年05月05日 19:45
  • 466KB
  • 下载

支持向量机(SVM)——斯坦福CS229机器学习个人总结(三)

鉴于我刚开始学习支持向量机(Support vector machines,简称SVM)时的一脸懵逼,我认为有必要先给出一些SVM的定义。下面是一个最简单的SVM: 图一 分类算法:支持向量机(...

基于支持向量机的机器学习研究

  • 2011年03月18日 11:08
  • 578KB
  • 下载

机器学习与支持向量机

  • 2009年05月12日 08:09
  • 870KB
  • 下载

机器学习算法(三)支持向量机

1、问题介绍本文只涉及二分类支持向量机。支持向量机问题可以分为三种情况来讨论: 1、硬间隔支持向量机:用于可以被一个超平面严格分开的问题中,又称为线性可分支持向量机 2、软间隔支持向量机:用于可以...

十大机器学习算法之支持向量机(三)

4.核函数这一篇本来想写,但是发现一篇写的比较好的文章,就拿过来用了,美名其曰,借鉴一下, 借鉴地址: http://mp.weixin.qq.com/s?__biz=MzA5ODUxOTA5Mg...

机器学习总结(三):SVM支持向量机(面试必考)

基本思想:试图寻找一个超平面来对样本分割,把样本中的正例和反例用超平面分开,并尽可能的使正例和反例之间的间隔最大。 算法推导过程: (1)代价函数:假设正类样本y =wTx+ b>=+1,负类...

转载--机器学习算法与Python实践之(三)支持向量机(SVM)进阶

出处:http://blog.csdn.net/zouxy09/article/details/17291805 机器学习算法与Python实践之(三)支持向量机(SV...

机器学习支持支持向量机(SVM)

  • 2014年05月29日 14:09
  • 1.67MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习(三):支持向量机
举报原因:
原因补充:

(最多只允许输入30个字)