中文分词的python实现-基于HMM算法

隐马尔科夫模型(HMM)

模型介绍

HMM模型是由一个“五元组”组成:

  • StatusSet: 状态值集合
  • ObservedSet: 观察值集合
  • TransProbMatrix: 转移概率矩阵
  • EmitProbMatrix: 发射概率矩阵
  • InitStatus: 初始状态分布

将HMM应用在分词上,要解决的问题是:参数(ObservedSet, TransProbMatrix, EmitRobMatrix, InitStatus)已知的情况下,求解状态值序列。解决这个问题的最有名的方法是viterbi算法

参数介绍

  1. StatusSet,状态值集合为(B, M, E, S): {B:begin, M:middle, E:end, S:single}。分别代表每个状态代表的是该字在词语中的位置,B代表该字是词语中的起始字,M代表是词语中的中间字,E代表是词语中的结束字,S则代表是单字成词。
  2. ObservedSet,观察值集合就是所有汉字,甚至包括标点符号所组成的集合。
  3. TransProbMatrix,状态转移概率矩阵的含义就是从状态X转移到状态Y的概率,是一个4×4的矩阵,即{B,E,M,S}×{B,E,M,S}。
  4. EmitProbMatrix,发射概率矩阵的每个元素都是一个条件概率,代表P(Observed[i]|Status[j])
  5. InitStatus,初始状态概率分布表示句子的第一个字属于{B,E,M,S}这四种状态的概率。

Viterbi算法

Viterbi算法的核心思想就是动态规划实现最短路径,按照Michael Collins教的,核心思想是: 
Define a dynamic programming table π(k,u,v), 
π(k,u,v) = maximum probability of a tag sequence ending in tags u,v at position k. 
For any k ∈ {1…n}: π(k,u,v) = max ( π(k-1,w,u) × q(v|w,u) × e(xk|v) ) 
完整的Viterbi算法网上有很多资料可以查看,本文主要关注代码的实现。


实验

代码1:模型训练

生成三个文件: 
prob_start.py 为初始状态概率 
prob_trans.py 为状态转移概率 
prob_emit.py 为发射概率

# -*- coding: utf-8 -*-

# 二元隐马尔科夫模型(Bigram HMMs)
# 'trainCorpus.txt_utf8'为人民日报已经人工分词的预料,29万多条句子

import sys

#state_M = 4
#word_N = 0
A_dic = {}
B_dic = {}
Count_dic = {}
Pi_dic = {}
word_set = set()
state_list = ['B','M','E','S']
line_num = -1

INPUT_DATA = "trainCorpus.txt_utf8"
PROB_START = "trainHMM\prob_start.py"   #初始状态概率
PROB_EMIT = "trainHMM\prob_emit.py"     #发射概率
PROB_TRANS = "trainHMM\prob_trans.py"   #转移概率


def init():  #初始化字典
    #global state_M
    #global word_N
    for state in state_list:
        A_dic[state] = {}
        for state1 in state_list:
            A_dic[state][state1] = 0.0
    for state in state_list:
        Pi_dic[state] = 0.0
        B_dic[state] = {}
        Count_dic[state] = 0


def getList(input_str):  #输入词语,输出状态
    outpout_str = []
    if len(input_str) == 1:
        outpout_str.append('S')
    elif len(input_str) == 2:
        outpout_str = ['B','E']
    else:
        M_num = len(input_str) -2
        M_list = ['M'] * M_num
        outpout_str.append('B')
        outpout_str.extend(M_list)  #把M_list中的'M'分别添加进去
        outpout_str.append('E')
    return outpout_str


def Output():   #输出模型的三个参数:初始概率+转移概率+发射概率
    start_fp = file(PROB_START,'w')
    emit_fp = file(PROB_EMIT,'w')
    trans_fp = file(PROB_TRANS,'w')
    print "len(word_set) = %s " % (len(word_set))

    for key in Pi_dic:           #状态的初始概率
        Pi_dic[key] = Pi_dic[key] * 1.0 / line_num
    print >>start_fp,Pi_dic

    for key in A_dic:            #状态转移概率
        for key1 in A_dic[key]:
            A_dic[key][key1] = A_dic[key][key1] / Count_dic[key]
    print >>trans_fp,A_dic

    for key in B_dic:            #发射概率(状态->词语的条件概率)
        for word in B_dic[key]:
            B_dic[key][word] = B_dic[key][word] / Count_dic[key]
    print >>emit_fp,B_dic

    start_fp.close()
    emit_fp.close()
    trans_fp.close()


def main():

    ifp = file(INPUT_DATA)
    init()
    global word_set   #初始是set()
    global line_num   #初始是-1
    for line in ifp:
        line_num += 1
        if line_num % 10000 == 0:
            print line_num

        line = line.strip()
        if not line:continue
        line = line.decode("utf-8","ignore")  #设置为ignore,会忽略非法字符


        word_list = []
        for i in range(len(line)):
            if line[i] == " ":continue
            word_list.append(line[i])
        word_set = word_set | set(word_list)   #训练预料库中所有字的集合


        lineArr = line.split(" ")
        line_state = []
        for item in lineArr:
            line_state.extend(getList(item))   #一句话对应一行连续的状态
        if len(word_list) != len(line_state):
            print >> sys.stderr,"[line_num = %d][line = %s]" % (line_num, line.endoce("utf-8",'ignore'))
        else:
            for i in range(len(line_state)):
                if i == 0:
                    Pi_dic[line_state[0]] += 1      #Pi_dic记录句子第一个字的状态,用于计算初始状态概率
                    Count_dic[line_state[0]] += 1   #记录每一个状态的出现次数
                else:
                    A_dic[line_state[i-1]][line_state[i]] += 1    #用于计算转移概率
                    Count_dic[line_state[i]] += 1
                    if not B_dic[line_state[i]].has_key(word_list[i]):
                        B_dic[line_state[i]][word_list[i]] = 0.0
                    else:
                        B_dic[line_state[i]][word_list[i]] += 1   #用于计算发射概率
    Output()
    ifp.close()


if __name__ == "__main__":
    main()
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123

代码2:测试分词效果

# -*- coding: utf-8 -*-

def load_model(f_name):
    ifp = file(f_name, 'rb')
    return eval(ifp.read())  #eval参数是一个字符串, 可以把这个字符串当成表达式来求值,


prob_start = load_model("trainHMM\prob_start.py")
prob_trans = load_model("trainHMM\prob_trans.py")
prob_emit = load_model("trainHMM\prob_emit.py")


def viterbi(obs, states, start_p, trans_p, emit_p):  #维特比算法(一种递归算法)
    V = [{}]
    path = {}
    for y in states:   #初始值
        V[0][y] = start_p[y] * emit_p[y].get(obs[0],0)   #在位置0,以y状态为末尾的状态序列的最大概率
        path[y] = [y]
    for t in range(1,len(obs)):
        V.append({})
        newpath = {}
        for y in states:      #从y0 -> y状态的递归
            (prob, state) = max([(V[t-1][y0] * trans_p[y0].get(y,0) * emit_p[y].get(obs[t],0) ,y0) for y0 in states if V[t-1][y0]>0])
            V[t][y] =prob
            newpath[y] = path[state] + [y]
        path = newpath  #记录状态序列
    (prob, state) = max([(V[len(obs) - 1][y], y) for y in states])  #在最后一个位置,以y状态为末尾的状态序列的最大概率
    return (prob, path[state])  #返回概率和状态序列


def cut(sentence):
    prob, pos_list =  viterbi(sentence,('B','M','E','S'), prob_start, prob_trans, prob_emit)
    return (prob,pos_list)


if __name__ == "__main__":
    test_str = u"新华网驻东京记者报道"
    prob,pos_list = cut(test_str)
    print test_str
    print pos_list
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

结果

新华网驻东京记者报道
['B', 'M', 'E', 'S', 'B', 'E', 'B', 'E', 'B', 'E']
 
 
  • 1
  • 2
  • 1
  • 2

人工分词的预料(trainCorpus.txt_utf8)可以从此处下载。

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
抱歉,作为AI语言模型,我没有办法提供具体的代码实现。但我可以为您讲解HMM模型中文分词的基本原理和步骤。 1. HMM模型HMM是一种基于概率的统计模型,常用于对序列信号的分析和建模。在语言处理中,HMM被广泛应用于分词、语音识别、手写识别等领域。HMM模型由状态序列、观测序列和转移概率、发射概率、初始概率三个部分组成,其中状态序列和观测序列是隐藏的随机变量,而转移概率、发射概率、初始概率是已知的模型参数。 2. 中文分词:中文是一种没有空格的语言,因此需要通过分词将句子划分成词语的序列。在基于HMM模型中文分词方法中,首先需要进行词语的标注和训练,即给定一些已知划分和未知划分的文本,利用HMM模型求出转移概率和发射概率,然后使用Viterbi算法对未知划分的文本进行分词,从而得到最可能的词语序列。 具体的中文分词步骤如下: 1)对语料库进行分词,得到一些训练数据。 2)建立词典,将训练数据中出现的所有词语放入词典中。 3)确定状态集合,由于中文分词中每个字都可以作为状态,状态集合即为所有字的集合。 4)建立转移概率矩阵,由于中文分词中每个字都可以作为状态,因此转移概率矩阵的大小为状态集合大小的平方。 5)建立发射概率矩阵,发射概率表示从某个状态生成某个观测值的概率,即每个词的出现概率。发射概率矩阵的大小为所有的状态和词典大小的乘积。 6)使用Viterbi算法对测试数据进行分词,输出最可能的词语序列。 以上是基于HMM模型中文分词的基本步骤和流程,希望对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值