bzoj1051 [HAOI2006]受欢迎的牛[图论][tarjan缩点]

原创 2016年11月07日 20:22:36

Description

每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。

Input

第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)

Output

一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000

以前所过一道tarjan缩点的题,觉得这类题还是比较简单。
易想到,这个图中会有多个强连通分量。如果一个强连通分类可以由任意一个另外的强连通分量到达(仰慕),且这种强连通分量只有一个的话(如果有多个会不满足上面那个条件),也就是这个强连通分量的入度为0。答案就是这个强连通分量的点的个数。tarjan缩点处理就行。

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int head1[10005],head2[10005],tov1[50005],tov2[50005];
int judge[10005],dfn[10005],low[10005],tot,stark[10005],dex;
int nex1[50005],nex2[50005],num[10005],bcnt,belong[10005],step;
void add1(int x,int y)
{
    tov1[++tot]=y;
    nex1[tot]=head1[x];
    head1[x]=tot;
}
void add2(int x,int y)
{
    tov2[++tot]=y;
    nex2[tot]=head2[x];
    head2[x]=tot;
}
void tarjan(int k)
{
    stark[++step]=k;
    dfn[k]=low[k]=++dex;
    judge[k]=1;
    int t=head1[k];
    while(tov1[t])
    {
        if(!dfn[tov1[t]])
        {
            tarjan(tov1[t]);
            low[k]=min(low[k],low[tov1[t]]);
        }
        else if(judge[tov1[t]])
            low[k]=min(low[k],dfn[tov1[t]]);
        t=nex1[t];
    }
    if(low[k]==dfn[k])
    {
        bcnt++;
        int j=0;
        while(j!=k)
        {
            j=stark[step--];
            judge[j]=0;
            belong[j]=bcnt;
            num[bcnt]++;
        }
    }
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        add1(a,b);
    }
    for(int i=1;i<=n;i++)
        if(!dfn[i])
            tarjan(i);
    tot=0;
    for(int i=1;i<=n;i++)
    {
        int t=head1[i];
        while(tov1[t])
        {
            if(belong[i]!=belong[tov1[t]])
                add2(belong[i],belong[tov1[t]]);
            t=nex1[t];
        }
    }
    int ans=0,tmp;
    for(int i=1;i<=bcnt;i++)
        if(head2[i]==0)
        {
            ans++;
            tmp=i;
        }
    if(ans==1)
        printf("%d",num[tmp]);
    else printf("0");
    return 0;
}
版权声明:随意转载~

bzoj1051【HAOI2006】受欢迎的牛

Tarjan裸题
  • AaronGZK
  • AaronGZK
  • 2016年02月07日 17:03
  • 2074

【bzoj1309】【HAOI2006】【受欢迎的牛】【强连通分量缩点】

Description 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛...
  • sunshinezff
  • sunshinezff
  • 2015年09月07日 21:25
  • 1750

强连通分量及缩点tarjan算法解析

强连通分量: 简言之 就是找环(每条边只走一次,两两可达) 孤立的一个点也是一个连通分量   使用tarjan算法 在嵌套的多个环中优先得到最大环( 最小环就是每个孤立点)   定义: int Ti...
  • qq574857122
  • qq574857122
  • 2013年11月16日 22:49
  • 10895

BZOJ1051: [HAOI2006]受欢迎的牛(强连通Tarjan 缩点)

题目链接 题意:每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C...
  • u013167299
  • u013167299
  • 2015年11月09日 13:33
  • 261

【bzoj 1051】[HAOI2006]受欢迎的牛(Tarjan缩点)

采漫天霞云,持一束流光,为你铺一世红妆
  • reverie_mjp
  • reverie_mjp
  • 2016年06月18日 10:22
  • 458

BZOJ 1051: [HAOI2006]受欢迎的牛 强连通分量,Tarjan缩点

Description   每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那...
  • just_sort
  • just_sort
  • 2017年01月21日 21:44
  • 154

【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan

Description每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为...
  • LOI_DQS
  • LOI_DQS
  • 2015年10月25日 08:57
  • 790

BZOJ1051 [HAOI2006]受欢迎的牛(强连通分量+缩点)

题目大意:给出一个有向图,求有多少个结点能被任意一个结点到达  如果图无环,当出度为0的结点只有一个时(受欢迎的牛就是这头),问题有解,否则无解(几个出度为0的结点不会到达对方) 如果图有...
  • cjk_cjk
  • cjk_cjk
  • 2015年02月02日 22:13
  • 474

[BZOJ 1051][HAOI2006]受欢迎的牛(强连通分量、缩点)

Description  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛...
  • zars19
  • zars19
  • 2017年02月13日 22:27
  • 73

【Bzoj1051】 [HAOI2006]受欢迎的牛

时间限制:1S / 空间限制:256MB 【在线测试提交传送门】【问题描述】 每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系...
  • hjf1201
  • hjf1201
  • 2017年11月08日 15:20
  • 49
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:bzoj1051 [HAOI2006]受欢迎的牛[图论][tarjan缩点]
举报原因:
原因补充:

(最多只允许输入30个字)