# 用pycaffe绘制训练过程的loss和accuracy曲线

#!/usr/bin/env python
# 导入绘图库
from pylab import *
import matplotlib.pyplot as plt

# 导入"咖啡"
import caffe

# 设置为gpu模式
caffe.set_device(0)
caffe.set_mode_gpu()

# 使用SGDSolver，即随机梯度下降算法
solver = caffe.SGDSolver('lenet_solver_sgd.prototxt')

# 等价于solver文件中的max_iter，即最大解算次数
niter = 10000
# 每隔100次收集一次数据
display_iter = 100

# 每次测试进行100次解算，根据test用例数量和batch_size得出
test_iter = 100
# 每500次训练进行一次测试（100次解算），根据train用例数量和batch_size得出
test_interval = 500

# train loss
train_loss = zeros(ceil(niter * 1.0 / display_iter))
# test loss
test_loss = zeros(ceil(niter * 1.0 / test_interval))
# test accuracy
test_acc = zeros(ceil(niter * 1.0 / test_interval))

# iteration 0，不计入
solver.step(1)

# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
# 进行一次解算
solver.step(1)
# 计算train loss
_train_loss += solver.net.blobs['loss'].data
if it % display_iter == 0:
# 计算平均train loss
train_loss[it // display_iter] = _train_loss / display_iter
_train_loss = 0

if it % test_interval == 0:
for test_it in range(test_iter):
# 进行一次测试
solver.test_nets[0].forward()
# 计算test loss
_test_loss += solver.test_nets[0].blobs['loss'].data
# 计算test accuracy
_accuracy += solver.test_nets[0].blobs['accuracy'].data
# 计算平均test loss
test_loss[it / test_interval] = _test_loss / test_iter
# 计算平均test accuracy
test_acc[it / test_interval] = _accuracy / test_iter
_test_loss = 0
_accuracy = 0

# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()

# train loss -> 绿色
ax1.plot(display_iter * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')

ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()

• 本文已收录于以下专栏：

## caffe保存训练输出到log 并绘制accuracy loss曲线以及ssd画loss和accuracy曲线

（一）ssd的log文件保存在 /home/myname/caffe/jobs/ 下面 （四） 调用py程序绘制图形     ./plot_training_log.py.example 0 ...
• u014696921
• 2017年03月23日 19:38
• 1795

## 模型调参：绘制loss曲线图

• wfei101
• 2017年12月01日 21:29
• 153

## faster RCNN的Python的画出来loss曲线图

faster RCNN的Python的画出来loss曲线图
• wfei101
• 2017年07月26日 22:13
• 1510

## caffe绘制训练过程的loss和accuracy曲线

• u013078356
• 2016年04月14日 20:44
• 25548

## Caffe如何画出训练中的loss曲线图和accuracy曲线图

• fx409494616
• 2016年11月17日 10:59
• 6665

## 如何利用caffe自带的工具包绘制accuracy/loss曲线

• Running_J
• 2016年05月26日 11:30
• 6875

## Caffe学习系列(19): 绘制loss和accuracy曲线

• qq_26898461
• 2016年01月19日 10:28
• 4584

## caffe 绘制训练集和测试集的loss和accuracy对比曲线

• 2017年04月20日 18:47
• 122KB
• 下载

## caffe框架下如何画出loss和accuracy曲线图

• u014653401
• 2017年03月01日 16:30
• 1339

## Caffe学习：绘制loss和accuracy曲线（使用caffe的python接口）

Caffe学习：绘制loss和accuracy曲线（使用caffe的python接口） 上一篇博客讲到了使用caffe的工具包来绘制loss曲线和accuracy曲线，这篇文章主要将如何使用ca...
• AUTO1993
• 2017年05月06日 20:55
• 1196

举报原因： 您举报文章：用pycaffe绘制训练过程的loss和accuracy曲线 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)