用pycaffe绘制训练过程的loss和accuracy曲线

转载 2015年11月18日 10:25:28
#!/usr/bin/env python
# 导入绘图库
from pylab import *
import matplotlib.pyplot as plt

# 导入"咖啡"
import caffe

# 设置为gpu模式
caffe.set_device(0)
caffe.set_mode_gpu()

# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('lenet_solver_sgd.prototxt')

# 等价于solver文件中的max_iter,即最大解算次数
niter = 10000
# 每隔100次收集一次数据
display_iter = 100

# 每次测试进行100次解算,根据test用例数量和batch_size得出
test_iter = 100
# 每500次训练进行一次测试(100次解算),根据train用例数量和batch_size得出
test_interval = 500

# train loss
train_loss = zeros(ceil(niter * 1.0 / display_iter))
# test loss
test_loss = zeros(ceil(niter * 1.0 / test_interval))
# test accuracy
test_acc = zeros(ceil(niter * 1.0 / test_interval))

# iteration 0,不计入
solver.step(1)

# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
    # 进行一次解算
    solver.step(1)
    # 计算train loss
    _train_loss += solver.net.blobs['loss'].data
    if it % display_iter == 0:
        # 计算平均train loss
        train_loss[it // display_iter] = _train_loss / display_iter
        _train_loss = 0

    if it % test_interval == 0:
        for test_it in range(test_iter):
            # 进行一次测试
            solver.test_nets[0].forward()
            # 计算test loss
            _test_loss += solver.test_nets[0].blobs['loss'].data
            # 计算test accuracy
            _accuracy += solver.test_nets[0].blobs['accuracy'].data
        # 计算平均test loss
        test_loss[it / test_interval] = _test_loss / test_iter
        # 计算平均test accuracy
        test_acc[it / test_interval] = _accuracy / test_iter
        _test_loss = 0
        _accuracy = 0

# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()

# train loss -> 绿色
ax1.plot(display_iter * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')

ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()


转载自:http://blog.csdn.net/u011762313/article/details/48215725

相关文章推荐

faster RCNN的Python的画出来loss曲线图

faster RCNN的Python的画出来loss曲线图
  • wfei101
  • wfei101
  • 2017年07月26日 22:13
  • 851

Faster-Rcnn的loss曲线可视化

由于要写论文需要画loss曲线,查找网上的loss曲线可视化的方法发现大多数是基于Imagenat的一些方法,在运用到Faster-Rcnn上时没法用,本人不怎么会编写代码,所以想到能否用python...
  • wxplol
  • wxplol
  • 2017年06月24日 20:13
  • 824

caffe的python接口学习(7):绘制loss和accuracy曲线

原文链接:http://www.cnblogs.com/denny402/p/5686067.html 使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐...

caffe的python接口学习(7):绘制loss和accuracy曲线

使用python接口来运行caffe程序,主要的原因是python非常容易可视化。所以不推荐大家在命令行下面运行python程序。如果非要在命令行下面运行,还不如直接用 c++算了。 推荐使用jup...

Caffe学习系列(14):初识数据可视化

首先将caffe的根目录作为当前目录,然后加载caffe程序自带的小猫图片,并显示。 图片大小为360x480,三通道 In [1]: import numpy as np import...

如何用gitbook写书

假设你 已经知道如何编写Markdown 已经安装好gitbook软件 目标生成一本小书,它有前言,章节1,章节2,后记。例如:简介 第一章:如何造火箭 1. 燃料学 2. 空气动...
  • maray
  • maray
  • 2015年11月27日 11:13
  • 5455

caffe绘制训练过程中的accuracy、loss曲线

训练模型并保存日志文件        首先建立一个训练数据的脚本文件train.sh,其内容如下,其中,2>&1   | tee examples/mnist/mnist_train_log.log ...

caffe绘制训练过程的loss和accuracy曲线

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tool...

python学习笔记(三)绘制训练过程的loss和accuracy曲线

0、参考文献 [1] http://blog.csdn.net/u013078356/article/details/51154847 [2] http://blog.csdn.net/YhL...

caffe绘制训练过程的loss和accuracy曲线

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tool...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:用pycaffe绘制训练过程的loss和accuracy曲线
举报原因:
原因补充:

(最多只允许输入30个字)