用pycaffe绘制训练过程的loss和accuracy曲线

转载 2015年11月18日 10:25:28
#!/usr/bin/env python
# 导入绘图库
from pylab import *
import matplotlib.pyplot as plt

# 导入"咖啡"
import caffe

# 设置为gpu模式
caffe.set_device(0)
caffe.set_mode_gpu()

# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('lenet_solver_sgd.prototxt')

# 等价于solver文件中的max_iter,即最大解算次数
niter = 10000
# 每隔100次收集一次数据
display_iter = 100

# 每次测试进行100次解算,根据test用例数量和batch_size得出
test_iter = 100
# 每500次训练进行一次测试(100次解算),根据train用例数量和batch_size得出
test_interval = 500

# train loss
train_loss = zeros(ceil(niter * 1.0 / display_iter))
# test loss
test_loss = zeros(ceil(niter * 1.0 / test_interval))
# test accuracy
test_acc = zeros(ceil(niter * 1.0 / test_interval))

# iteration 0,不计入
solver.step(1)

# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
    # 进行一次解算
    solver.step(1)
    # 计算train loss
    _train_loss += solver.net.blobs['loss'].data
    if it % display_iter == 0:
        # 计算平均train loss
        train_loss[it // display_iter] = _train_loss / display_iter
        _train_loss = 0

    if it % test_interval == 0:
        for test_it in range(test_iter):
            # 进行一次测试
            solver.test_nets[0].forward()
            # 计算test loss
            _test_loss += solver.test_nets[0].blobs['loss'].data
            # 计算test accuracy
            _accuracy += solver.test_nets[0].blobs['accuracy'].data
        # 计算平均test loss
        test_loss[it / test_interval] = _test_loss / test_iter
        # 计算平均test accuracy
        test_acc[it / test_interval] = _accuracy / test_iter
        _test_loss = 0
        _accuracy = 0

# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()

# train loss -> 绿色
ax1.plot(display_iter * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')

ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()


转载自:http://blog.csdn.net/u011762313/article/details/48215725

相关文章推荐

caffe绘制训练过程中的accuracy、loss曲线

训练模型并保存日志文件        首先建立一个训练数据的脚本文件train.sh,其内容如下,其中,2>&1   | tee examples/mnist/mnist_train_log.log ...

caffe绘制训练过程的loss和accuracy曲线

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tool...

Caffe学习:使用pycaffe绘制loss、accuracy曲线

Caffe学习:使用pycaffe绘制loss、accuracy曲线

caffe绘制训练过程的loss和accuracy曲线

转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。...

caffe绘制训练过程的loss和accuracy曲线

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tool...

caffe自带工具绘制训练accuracy、loss曲线

记录下使用caffe自带工具绘制accuracy、loss曲线,方法简单,方便展示。

Caffe的可视化训练:绘制loss和accuracy曲线

曾经用caffe自带的提取训练log的脚本以及画图的脚本,发现plot_traning_lo.py老报错。  就改用Spyder直接运行Python 脚本的方式了。 本文参考了 徐其华的blog ...

在卷积神经网络训练过程中loss出现NaN的原因以及可以采取的方法

在初学卷积神经网络的过程中,有时会遇到loss在训练过程中出现NaN的情况,本文列出了几个可能原因及症状并提供了一些方法解决,希望对初学者有所帮助。

解决Caffe训练过程中loss不变问题

caffe中loss保持87.33和0.69的解决办法

DeepID训练过程中loss居高不下解决方法

1.      DeepID架构参考: http://blog.csdn.net/a_1937/article/details/50334919 2.      问题一: 用...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)