用pycaffe绘制训练过程的loss和accuracy曲线

转载 2015年11月18日 10:25:28
#!/usr/bin/env python
# 导入绘图库
from pylab import *
import matplotlib.pyplot as plt

# 导入"咖啡"
import caffe

# 设置为gpu模式
caffe.set_device(0)
caffe.set_mode_gpu()

# 使用SGDSolver,即随机梯度下降算法
solver = caffe.SGDSolver('lenet_solver_sgd.prototxt')

# 等价于solver文件中的max_iter,即最大解算次数
niter = 10000
# 每隔100次收集一次数据
display_iter = 100

# 每次测试进行100次解算,根据test用例数量和batch_size得出
test_iter = 100
# 每500次训练进行一次测试(100次解算),根据train用例数量和batch_size得出
test_interval = 500

# train loss
train_loss = zeros(ceil(niter * 1.0 / display_iter))
# test loss
test_loss = zeros(ceil(niter * 1.0 / test_interval))
# test accuracy
test_acc = zeros(ceil(niter * 1.0 / test_interval))

# iteration 0,不计入
solver.step(1)

# 辅助变量
_train_loss = 0; _test_loss = 0; _accuracy = 0
# 进行解算
for it in range(niter):
    # 进行一次解算
    solver.step(1)
    # 计算train loss
    _train_loss += solver.net.blobs['loss'].data
    if it % display_iter == 0:
        # 计算平均train loss
        train_loss[it // display_iter] = _train_loss / display_iter
        _train_loss = 0

    if it % test_interval == 0:
        for test_it in range(test_iter):
            # 进行一次测试
            solver.test_nets[0].forward()
            # 计算test loss
            _test_loss += solver.test_nets[0].blobs['loss'].data
            # 计算test accuracy
            _accuracy += solver.test_nets[0].blobs['accuracy'].data
        # 计算平均test loss
        test_loss[it / test_interval] = _test_loss / test_iter
        # 计算平均test accuracy
        test_acc[it / test_interval] = _accuracy / test_iter
        _test_loss = 0
        _accuracy = 0

# 绘制train loss、test loss和accuracy曲线
print '\nplot the train loss and test accuracy\n'
_, ax1 = plt.subplots()
ax2 = ax1.twinx()

# train loss -> 绿色
ax1.plot(display_iter * arange(len(train_loss)), train_loss, 'g')
# test loss -> 黄色
ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')
# test accuracy -> 红色
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')

ax1.set_xlabel('iteration')
ax1.set_ylabel('loss')
ax2.set_ylabel('accuracy')
plt.show()


转载自:http://blog.csdn.net/u011762313/article/details/48215725

caffe保存训练输出到log 并绘制accuracy loss曲线以及ssd画loss和accuracy曲线

(一)ssd的log文件保存在 /home/myname/caffe/jobs/ 下面 (四) 调用py程序绘制图形     ./plot_training_log.py.example 0 ...
  • u014696921
  • u014696921
  • 2017年03月23日 19:38
  • 1795

模型调参:绘制loss曲线图

模型调参:绘制loss曲线图
  • wfei101
  • wfei101
  • 2017年12月01日 21:29
  • 153

faster RCNN的Python的画出来loss曲线图

faster RCNN的Python的画出来loss曲线图
  • wfei101
  • wfei101
  • 2017年07月26日 22:13
  • 1510

caffe绘制训练过程的loss和accuracy曲线

在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果。如果自己写代码记录训练过程的数据,那就太麻烦了,caffe中其实已经自带了这样的小工具 caffe-master/tool...
  • u013078356
  • u013078356
  • 2016年04月14日 20:44
  • 25548

Caffe如何画出训练中的loss曲线图和accuracy曲线图

第一种方法:重定向训练日志文件 我们在训练的时候会用到caffe/buile/tools/caffe 这个里面的train这个选项。想要画出在训练日志里显示的loss和accuracy图,就可以把这些...
  • fx409494616
  • fx409494616
  • 2016年11月17日 10:59
  • 6665

如何利用caffe自带的工具包绘制accuracy/loss曲线

在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练。本文主要介绍在基于caffe框架训练网络时,如何利用caffe自带的一些实用的工具包来绘制曲线...
  • Running_J
  • Running_J
  • 2016年05月26日 11:30
  • 6875

Caffe学习系列(19): 绘制loss和accuracy曲线

转载自: Caffe学习系列(19): 绘制loss和accuracy曲线 - denny402 - 博客园 http://www.cnblogs.com/denny402/p/5110204.h...
  • qq_26898461
  • qq_26898461
  • 2016年01月19日 10:28
  • 4584

caffe 绘制训练集和测试集的loss和accuracy对比曲线

  • 2017年04月20日 18:47
  • 122KB
  • 下载

caffe框架下如何画出loss和accuracy曲线图

目录 目录 一 概述 二 生成日志文件 三 解析日志内容 四 结果 参考链接 一 概述   在使用caffe的过程中,我们知道其在训练过程中会打印出相应的日志信息...
  • u014653401
  • u014653401
  • 2017年03月01日 16:30
  • 1339

Caffe学习:绘制loss和accuracy曲线(使用caffe的python接口)

Caffe学习:绘制loss和accuracy曲线(使用caffe的python接口) 上一篇博客讲到了使用caffe的工具包来绘制loss曲线和accuracy曲线,这篇文章主要将如何使用ca...
  • AUTO1993
  • AUTO1993
  • 2017年05月06日 20:55
  • 1196
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:用pycaffe绘制训练过程的loss和accuracy曲线
举报原因:
原因补充:

(最多只允许输入30个字)