关闭

bzoj 2002: [Hnoi2010]Bounce 弹飞绵羊

187人阅读 评论(0) 收藏 举报
分类:
题意:

直线上有一排n个弹力装置,每个弹力装置会将绵羊弹到下ki个弹力装置处;

如果没有了则绵羊被弹飞。。

问每个绵羊被弹了几次弹飞;

会修改弹力装置的k值;

n<=200000,m<=100000;

其实感觉对LCT的理解不够深,不过这题之后感觉又好了点吧。

很明显就是要跟弹飞到的地方建边,至于飞出去的就连到N+1 询问的时候就把N+1作为根

那么我们access要询问的点就得出弹飞路径了 

再把点旋到根,左孩子大小就答案了 所以维护一个size就好了

代码一般吧 不算好看


#include
#include
#include
#include
#include
#include
#include
#include
#include
#define inf 1000000000
#define me(a,x) memset(a,x,sizeof a)
#define cp(a,x) memcpy(a,x,sizeof a)
#define N 200010
using namespace std;
int fa[N],n,m,c[N][2],st[N],l[N],size[N];
bool rev[N];
bool Rt(int x)
{
	if(c[fa[x]][0]==x || c[fa[x]][1]==x)return 0;
	return 1;
}
void pushup(int x)
{
	size[x]=size[c[x][0]]+size[c[x][1]]+1;
}
void pushdown(int x)
{
	int l=c[x][0],r=c[x][1];
	if(rev[x])
	{
		rev[x]=0,rev[l]^=1,rev[r]^=1;
		swap(c[x][0],c[x][1]);
	}
}
void rotate(int x)
{
	int y=fa[x],z=fa[y],a=c[y][1]==x,b=c[z][1]==y,g=c[x][!a];
	if(!Rt(y))c[z][b]=x;
	fa[g]=y,c[y][a]=g;
	fa[y]=x,c[x][!a]=y;
	fa[x]=z;
	pushup(y); pushup(x);
}
void splay(int x)
{
	int top=0,i;
	for(i=x;!Rt(i);i=fa[i])st[++top]=i;
	st[++top]=i;
	for(i=top;i;i--)pushdown(st[i]);
	while(!Rt(x))
	{
		int y=fa[x],z=fa[y],a=c[y][1]==x,b=c[z][1]==y;
		if(!Rt(y))
		{
			if(a==b)rotate(y);
			else rotate(x);
		}
		rotate(x);
	}
}
void access(int x)
{
	int last=0;
	while(x)
	{
		splay(x);
		c[x][1]=last;
		//pushup(x);
		last=x,x=fa[x];
	}
}
void make_root(int x)
{
	access(x); splay(x);
	rev[x]^=1;
}
void split(int x,int y)
{
	make_root(x);
	access(y); splay(y);
}
void link(int x,int y)
{
	make_root(x); fa[x]=y;
}
void cut(int x,int y)
{
	split(x,y);
	fa[x]=c[y][0]=0;
}
int main()
{
	char ch[10]; int x,y,i;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	{
		scanf("%d",&l[i]);
		fa[i]=l[i]+i,size[i]=1;
		if(fa[i]>n)fa[i]=n+1;
		l[i]=fa[i];
	}
	scanf("%d",&m);
	while(m--)
	{
		scanf("%d",&i);
		if(i==1)
		{
			make_root(n+1);
			scanf("%d",&x); x++;
			access(x); splay(x); printf("%d\n",size[c[x][0]]);
		}
		else
		{
			scanf("%d%d",&x,&y); x++;
			int t=min(n+1,x+y);
			cut(x,l[x]); link(x,t); l[x]=t;
		}
	}
    return 0;
}
1
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

2002: [Hnoi2010]Bounce 弹飞绵羊(分块)

Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装...
  • a305657
  • a305657
  • 2015-09-21 10:39
  • 363

Hnoi2010弹飞绵羊题解LCT

题目大意 给定一个序列,每个点有一个权值a[i],一只绵羊若站在点i上会被弹到第i+a[i]个点上,支持单点修改操作,求从某个点出发经过多少次会被弹飞。 题解 令每个点的父亲结点是会被弹到的结点,...
  • t14t41t
  • t14t41t
  • 2015-08-13 15:40
  • 555

LCT(Bounce 弹飞绵羊,BZOJ 2002)

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 参考博客: http://blog.csdn.net/wzq_qwq/arti...
  • xl2015190026
  • xl2015190026
  • 2017-07-21 14:25
  • 72

bzoj - 2002 弹飞绵羊

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当...
  • ACVector
  • ACVector
  • 2017-08-06 10:25
  • 109

【bzoj2002】【Hnoi2010】【Bounce 弹飞绵羊】【lct】

题目大意某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数...
  • chunkitlau
  • chunkitlau
  • 2017-05-12 21:25
  • 84

【HNOI2010】【BZOJ2002】Bounce 弹飞绵羊

Description某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设...
  • CreationAugust
  • CreationAugust
  • 2015-08-16 15:08
  • 641

Bzoj 2002 弹飞绵羊

学会LCT很久了,今天才会写LCT因为我使用数组而不是指针来保存节点,干脆利用起了根节点的fa这个空间来保存虚边具体的,如果fa为正数,则为splay中的边。如果是0,没有父节点。如果是负数,取反之后...
  • a1s4z5
  • a1s4z5
  • 2016-12-02 16:36
  • 170

[Hnoi2010]Bounce 弹飞绵羊 分块暴力

Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每...
  • civinx
  • civinx
  • 2016-12-28 21:59
  • 148

【bzoj2002】【Hnoi2010】【Bounce】【弹飞绵羊】【分块】

题目大意有n个格,可以在i往后跳a[i]个格,修改a[i],询问i跳多少次跳出这n个格。解题思路这是一道lct模板题,显然a[i]就是i的father,修改就是割一条边连一条边,询问一个点的深度。然而...
  • chunkitlau
  • chunkitlau
  • 2016-08-17 20:54
  • 182

BZOJ 2002, 弹飞绵羊

输入链上各弹力装置的弹力系数,要求支持修改弹力系数以及查询绵羊被弹几次后弹飞。 LCT可做,而且时间复杂度优。 分块虽然慢一些但是编程复杂度比较低。 两个数组cnt和nxt分别记录处于当前装置时被弹...
  • u010576722
  • u010576722
  • 2016-08-14 11:18
  • 114
    个人资料
    • 访问:46451次
    • 积分:2323
    • 等级:
    • 排名:第18590名
    • 原创:169篇
    • 转载:1篇
    • 译文:0篇
    • 评论:9条