高级人工智能—约束推理(学习)

原创 2013年12月05日 10:14:12

     约束满足问题(Constraint Satisfaction Problem, 简称CSP) 包含一组变量与一组变量间的约束。变量表示领域参数,每个变量都有一个固定的值域。变量的值域可能是有限的,例如一个布尔变量的值域包含两个值;也可能是离散无限的,如整数域;也可能是连续的,如实数域。 

现实生活中的CSP

                        赋值问题: e.g., who teaches what class

                        时间安排: e.g., which class is offered when and where?

(1)约束可用于描述领域对象的性质、相互关系、任务要求、目标等。
(2)约束满足问题的目标就是找到所有变量的一个(或多个)赋值,使所有约束都得到满足。
(3)目前约束推理的研究主要集中在两个方面:
                       约束搜索:约束搜索主要研究有限域上的约束满足。对有限域而言,约束满足问题一般情况下是 一个 NP问题。现有方法:

                                     回溯法
                                     约束传播
                                     智能回溯与真值维护
                                     可变次序例示
                                     局部修正法
                       约束语言:

                                     CONSTRAINTS: 一种面向电路描述的约束表示语言。

                                     CHIP:是简便、灵活而有效地解决一大类组合问题
                                     COPS:利用面向对象技术,将说明性约束表达与类型层次结合起来。

在实际应用中,算法的表现形式千变万化,但是算法的情况也和数据结构类似。常用的算法大致有如下一些: 贪心法、分治法(如二分法检索)、回溯法、动态规划法、局部搜索法、分支限界法

                        穷尽搜索方法:产生所有可能的树,然后根据评价标准选择一棵最优的树。

                                     Exhaustive-Search-Top(P) {where P is a CSP of the  form(V,D,C)}
                                    1.   f:= the null assignment
                                    2.   return Exhaustive-Search(f, P)

  

                                    Exhaustive-Search(f,P)
                                     1.    if f is a total assignment of the variables in P
                                     2.          if f satisfies the constraints in P
                                     3.                answer := f

                                     4.          else 
                                     5.                 answer := Unsat
                                     6.     else 
                                     7.           v := some variable in P that is not yet assigned a value by f
                                     8.           answer := Unsat
                                     9.           for each value x while answer = Unsat
                                    10.                 f(v) := x
                                    11.                 answer := Exhaustive-Search(f, P)
                                    12.   return answer

                         贪心法:① 构造可行解的工作分阶段来完成;② 在各个阶段,选择那些在某些意义下是局部最优的方案,期望各阶段的局部最优的选择带来整体最优。

                                         例:Dijkstra的最短路径算法、Kruskal的求最小生成树算法、信号灯问题

                         回溯算法:回溯法可以去掉一些不存在解的分支,从而大大减少搜索的次数。如八皇后问题、迷宫问题、深度优先周游树或图

                                     Backtracking-Top(P)
                                    1    f := the null assignment
                                    2    return Backtracking(f,P)

                                    Backtracking(f,P)
                                    1    if f is a total assignment of the variables in P
                                    2          answer := f
                                    3    else 
                                    4          v :=  some variable in P that is not yet assigned a value  by f
                                    5          answer := Unsat
                                    6          for each value x  while answer = Unsat
                                    7                  f(v) := x
                                    8                  if f  satisfies the constraints in P
                                    9                         answer := Backtracking(f,P)
                                   10   return answer


相关文章推荐

Unity人工智能学习—高级随机运动

前面的学习中已经涉及到了随机运动,这一篇主要还是前面的随机运动的改进,不废话直接上效果图吧,对比前面的随机运动,这里的飞机会随机的转动方向,而且转弯平滑 有一种做法是每一帧都计算出一个随机的驱动...

人工智能基础复习3——知识与推理

07 Logical agents 一些建模范式 - 基于状态的模型:搜索问题,博弈     - 应用:路径搜索,玩游戏等     - 考虑状态、行动和代价 - 基于变量的模型:CSPs,贝...

人工智能实验--推理树

人工智能实验--推理树

人工智能基础复习4——不确定知识与推理

13 Uncertainty Outline 不确定性(Uncertainty) 概率(Probability) 语法和语义 推理 独立性及贝叶斯法则 不确定性 一个Agent...

[人工智能]机器学习知识体系篇(初级篇,中级篇,高级篇)

[人工智能]机器学习知识体系篇(初级篇,中级篇,高级篇)

人工智能不确定性推理

  • 2010年04月08日 17:21
  • 829KB
  • 下载

Unity人工智能学习—确定性AI算法之追踪算法四

在追踪算法三中已经提到了它的缺陷之处:到达目标点的时候并不会马上停下来,而是不停的来回穿梭在目标点。这一篇其实就是第三篇优化这个缺陷的算法。它的效果图如图所示: 它的核心算法代码如下: Vecto...

L-概率推理--人工智能(AI).ppt

  • 2011年04月13日 15:30
  • 366KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:高级人工智能—约束推理(学习)
举报原因:
原因补充:

(最多只允许输入30个字)