关闭

高级人工智能—约束推理(学习)

标签: 人工智能约束推理
882人阅读 评论(0) 收藏 举报
分类:

     约束满足问题(Constraint Satisfaction Problem, 简称CSP) 包含一组变量与一组变量间的约束。变量表示领域参数,每个变量都有一个固定的值域。变量的值域可能是有限的,例如一个布尔变量的值域包含两个值;也可能是离散无限的,如整数域;也可能是连续的,如实数域。 

现实生活中的CSP

                        赋值问题: e.g., who teaches what class

                        时间安排: e.g., which class is offered when and where?

(1)约束可用于描述领域对象的性质、相互关系、任务要求、目标等。
(2)约束满足问题的目标就是找到所有变量的一个(或多个)赋值,使所有约束都得到满足。
(3)目前约束推理的研究主要集中在两个方面:
                       约束搜索:约束搜索主要研究有限域上的约束满足。对有限域而言,约束满足问题一般情况下是 一个 NP问题。现有方法:

                                     回溯法
                                     约束传播
                                     智能回溯与真值维护
                                     可变次序例示
                                     局部修正法
                       约束语言:

                                     CONSTRAINTS: 一种面向电路描述的约束表示语言。

                                     CHIP:是简便、灵活而有效地解决一大类组合问题
                                     COPS:利用面向对象技术,将说明性约束表达与类型层次结合起来。

在实际应用中,算法的表现形式千变万化,但是算法的情况也和数据结构类似。常用的算法大致有如下一些: 贪心法、分治法(如二分法检索)、回溯法、动态规划法、局部搜索法、分支限界法

                        穷尽搜索方法:产生所有可能的树,然后根据评价标准选择一棵最优的树。

                                     Exhaustive-Search-Top(P) {where P is a CSP of the  form(V,D,C)}
                                    1.   f:= the null assignment
                                    2.   return Exhaustive-Search(f, P)

  

                                    Exhaustive-Search(f,P)
                                     1.    if f is a total assignment of the variables in P
                                     2.          if f satisfies the constraints in P
                                     3.                answer := f

                                     4.          else 
                                     5.                 answer := Unsat
                                     6.     else 
                                     7.           v := some variable in P that is not yet assigned a value by f
                                     8.           answer := Unsat
                                     9.           for each value x while answer = Unsat
                                    10.                 f(v) := x
                                    11.                 answer := Exhaustive-Search(f, P)
                                    12.   return answer

                         贪心法:① 构造可行解的工作分阶段来完成;② 在各个阶段,选择那些在某些意义下是局部最优的方案,期望各阶段的局部最优的选择带来整体最优。

                                         例:Dijkstra的最短路径算法、Kruskal的求最小生成树算法、信号灯问题

                         回溯算法:回溯法可以去掉一些不存在解的分支,从而大大减少搜索的次数。如八皇后问题、迷宫问题、深度优先周游树或图

                                     Backtracking-Top(P)
                                    1    f := the null assignment
                                    2    return Backtracking(f,P)

                                    Backtracking(f,P)
                                    1    if f is a total assignment of the variables in P
                                    2          answer := f
                                    3    else 
                                    4          v :=  some variable in P that is not yet assigned a value  by f
                                    5          answer := Unsat
                                    6          for each value x  while answer = Unsat
                                    7                  f(v) := x
                                    8                  if f  satisfies the constraints in P
                                    9                         answer := Backtracking(f,P)
                                   10   return answer


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:30036次
    • 积分:442
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:9篇
    • 译文:0篇
    • 评论:8条
    文章分类
    最新评论