贝叶斯过滤算法的基本步骤

原创 2006年05月18日 18:01:00

一. 贝叶斯过滤算法的基本步骤

1) 收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。
2) 提取邮件主题和邮件体中的独立字串例如 ABC32,¥234等作为TOKEN串并统计提取出的TOKEN串出现的次数即字频。按照上述的方法分别处理垃圾邮件集和非垃圾邮件集中的所有邮件。
3) 每一个邮件集对应一个哈希表,hashtable_good对应非垃圾邮件集而hashtable_bad对应垃圾邮件集。表中存储TOKEN串到字频的映射关系。
4) 计算每个哈希表中TOKEN串出现的概率P=(某TOKEN串的字频)/(对应哈希表的长度)
5) 综合考虑hashtable_good和hashtable_bad,推断出当新来的邮件中出现某个TOKEN串时,该新邮件为垃圾邮件的概率。数学表达式为:
A事件----邮件为垃圾邮件;
t1,t2 …….tn代表TOKEN串
则P(A|ti)表示在邮件中出现TOKEN串ti时,该邮件为垃圾邮件的概率。

P1(ti)=(ti在hashtable_good中的值)
P2(ti)=(ti在hashtable_ bad中的值)
则 P(A|ti)= P1(ti)/[(P1(ti)+ P2(ti)];
6) 建立新的哈希表 hashtable_probability存储TOKEN串ti到P(A|ti)的映射
7) 至此,垃圾邮件集和非垃圾邮件集的学习过程结束。根据建立的哈希表 hashtable_probability可以估计一封新到的邮件为垃圾邮件的可能性。
当新到一封邮件时,按照步骤2)生成TOKEN串。查询hashtable_probability得到该TOKEN 串的键值。
假设由该邮件共得到N个TOKEN串,t1,t2…….tn, hashtable_probability中对应的值为P1,P2,。。。。。。PN,
P(A|t1 ,t2, t3……tn)表示在邮件中同时出现多个TOKEN串t1,t2…….tn时,该邮件为垃圾邮件的概率。
由复合概率公式可得
P(A|t1 ,t2, t3……tn)=(P1*P2*。。。。PN)/[P1*P2*。。。。。PN+(1-P1)*(1-P2)*。。。(1-PN)]
当P(A|t1 ,t2, t3……tn)超过预定阈值时,就可以判断邮件为垃圾邮件。

二. 贝叶斯过滤算法举例

例如:一封含有“法 轮 功”字样的垃圾邮件 A
和 一封含有“法律”字样的非垃圾邮件B
根据邮件A生成hashtable_ bad,该哈希表中的记录为
法:1次
轮:1次
功:1次
计算得在本表中:
法出现的概率为0。3
轮出现的概率为0。3
功出现的概率为0。3
根据邮件B生成hashtable_good,该哈希表中的记录为:
法:1
律:1
计算得在本表中:
法出现的概率为0。5
律出现的概率为0。5
综合考虑两个哈希表,共有四个TOKEN串: 法 轮 功 律
当邮件中出现“法”时,该邮件为垃圾邮件的概率为:
P=0。3/(0。3+0。5)=0。375
出现“轮”时:
P=0。3/(0。3+0)=1
出现“功“时:
P=0。3/(0。3+0)=1
出现“律”时
P=0/(0+0。5)=0;
由此可得第三个哈希表:hashtable_probability 其数据为:
法:0。375
轮:1
功:1
律:0

当新到一封含有“功律”的邮件时,我们可得到两个TOKEN串,功 律
查询哈希表hashtable_probability可得
P(垃圾邮件| 功)=1
P (垃圾邮件|律)=0
此时该邮件为垃圾邮件的可能性为:
P=(0*1)/[0*1+(1-0)*(1-1)]=0
由此可推出该邮件为非垃圾邮件

遗传算法(Genetic Algorithm)解决迷宫寻路问题

代码:   package com.ssc.demo.client;     import java.util.List;     import com.google.gwt.core.clien...

遗传算法在走迷宫游戏中的应用

我的数据挖掘算法库:https://github.com/linyiqun/DataMiningAlgorithm  我的算法库:https://github.com/linyiqun/lyq-al...

贝叶斯过滤算法的基本步骤

现有邮件过滤技术较为成熟的技术算法之一! 1) 收集大量的垃圾邮件和非垃圾邮件,建立垃圾邮件集和非垃圾邮件集。 2) 提取邮件主题和邮件体中的独立字串例如 ABC32,¥234等作为TOKEN串并统...

mahout运行bayes贝叶斯算法步骤和报错分析全过程

使用mahout里面的bayes算法: I want to get the Bayes train input data set, so I ran the command below: ma...

学界 | 清华大学计算机系朱军教授:机器学习里的贝叶斯基本理论、模型和算法

AI科技评论按: 3月3日,中国人工智能学会AIDL第二期【人工智能前沿讲习班】在北京中科院自动化所举行,本期讲习班的主题为【机器学习前沿】。周志华教授担任学术主任,前来授课的嘉宾均为中国机器学习界一...
  • roslei
  • roslei
  • 2017年03月22日 12:49
  • 326

一种改进的贝叶斯邮件过滤算法

  • 2014年02月19日 11:08
  • 379KB
  • 下载

清华大学计算机科学与技术系朱军教授:机器学习里的贝叶斯基本理论、模型和算法

[转] http://www.leiphone.com/news/201703/djm3u9LLqylr3C8N.html 雷锋网[AI科技评论]按:3月3日,中国人工智能学会AID...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:贝叶斯过滤算法的基本步骤
举报原因:
原因补充:

(最多只允许输入30个字)