二叉树的非递归遍历

转载 2016年08月29日 14:45:08

二叉树的非递归遍历

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的。对于二叉树,有前序、中序以及后序三种遍历方法。因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁。而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现。在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点。

一.前序遍历

前序遍历按照“根结点-左孩子-右孩子”的顺序进行访问。

   1.递归实现

void preOrder1(BinTree *root)     //递归前序遍历
{
    if(root!=NULL)
    {
        cout<<root->data<<" ";
        preOrder1(root->lchild);
        preOrder1(root->rchild);
    }
}

   2.非递归实现

    根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:

     对于任一结点P:

     1)访问结点P,并将结点P入栈;

     2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;

     3)直到P为NULL并且栈为空,则遍历结束。

void preOrder2(BinTree *root)     //非递归前序遍历
{
    stack<BinTree*> s;
    BinTree *p=root;
    while(p!=NULL||!s.empty())
    {
        while(p!=NULL)
        {
           cout<<p->data<<" ";
            s.push(p);
            p=p->lchild;
        }
        if(!s.empty())
        {
            p=s.top();
            s.pop();
            p=p->rchild;
        }
    }
}

二.中序遍历

    中序遍历按照“左孩子-根结点-右孩子”的顺序进行访问。

    1.递归实现

void inOrder1(BinTree *root)      //递归中序遍历
{
    if(root!=NULL)
    {
        inOrder1(root->lchild);
        cout<<root->data<<" ";
        inOrder1(root->rchild);
    }
}

   2.非递归实现

    根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:

   对于任一结点P,

  1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;

  2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;

  3)直到P为NULL并且栈为空则遍历结束

void inOrder2(BinTree *root)      //非递归中序遍历
{
    stack<BinTree*> s;
    BinTree *p=root;
    while(p!=NULL||!s.empty())
    {
        while(p!=NULL)
        {
            s.push(p);
            p=p->lchild;
        }
        if(!s.empty())
        {
            p=s.top();
           cout<<p->data<<" ";
            s.pop();
            p=p->rchild;
        }
    }   
}

  三.后序遍历

      后序遍历按照“左孩子-右孩子-根结点”的顺序进行访问。

      1.递归实现

void postOrder1(BinTree *root)    //递归后序遍历
{
    if(root!=NULL)
    {
        postOrder1(root->lchild);
        postOrder1(root->rchild);
        cout<<root->data<<" ";
    }   
}

      2.非递归实现

       后序遍历的非递归实现是三种遍历方式中最难的一种。因为在后序遍历中,要保证左孩子和右孩子都已被访问并且左孩子在右孩子前访问才能访问根结点,这就为流程的控制带来了难题。下面介绍两种思路。

      第一种思路:对于任一结点P,将其入栈,然后沿其左子树一直往下搜索,直到搜索到没有左孩子的结点,此时该结点出现在栈顶,但是此时不能将其出栈并访问,因此其右孩子还为被访问。所以接下来按照相同的规则对其右子树进行相同的处理,当访问完其右孩子时,该结点又出现在栈顶,此时可以将其出栈并访问。这样就保证了正确的访问顺序。可以看出,在这个过程中,每个结点都两次出现在栈顶,只有在第二次出现在栈顶时,才能访问它。因此需要多设置一个变量标识该结点是否是第一次出现在栈顶。

void postOrder2(BinTree *root)    //非递归后序遍历
{
    stack<BTNode*> s;
    BinTree *p=root;
    BTNode *temp;
    while(p!=NULL||!s.empty())
    {
        while(p!=NULL)              //沿左子树一直往下搜索,直至出现没有左子树的结点
        {
            BTNode *btn=(BTNode *)malloc(sizeof(BTNode));
            btn->btnode=p;
            btn->isFirst=true;
            s.push(btn);
            p=p->lchild;
        }
        if(!s.empty())
        {
            temp=s.top();
            s.pop();
            if(temp->isFirst==true)     //表示是第一次出现在栈顶
             {
                temp->isFirst=false;
                s.push(temp);
               p=temp->btnode->rchild;   
            }
            else                        //第二次出现在栈顶
             {
               cout<<temp->btnode->data<<" ";
                p=NULL;
            }
        }
    }   
}

        第二种思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。

void postOrder3(BinTree *root)     //非递归后序遍历
{
    stack<BinTree*> s;
    BinTree *cur;                      //当前结点
    BinTree *pre=NULL;                 //前一次访问的结点
    s.push(root);
    while(!s.empty())
    {
        cur=s.top();
        if((cur->lchild==NULL&&cur->rchild==NULL)||
          (pre!=NULL&&(pre==cur->lchild||pre==cur->rchild)))
        {
           cout<<cur->data<<" " //如果当前结点没有孩子结点或者孩子节点都已被访问过
              s.pop();
            pre=cur;
        }
        else
       {
            if(cur->rchild!=NULL)
                s.push(cur->rchild);
            if(cur->lchild!=NULL)   
                s.push(cur->lchild);
        }
    }   
}

史上最简明易懂非递归遍历二叉树算法

三种不同的遍历方式区别在于栈空间的释放时机和输出结点信息时机的不同:先序和中序遍历是在访问栈顶元素的右孩子(右子树)之前退栈,而后序遍历在访问右子树之后退栈;先序遍历是在某结点入栈时输出其信息,而中序...
  • QiaoRuoZhuo
  • QiaoRuoZhuo
  • 2014年10月29日 14:59
  • 3815

对于二叉树三种非递归遍历方式的理解

利用栈实现二叉树的先序,中序,后序遍历的非递归操作 栈是一种先进后出的数据结构,其本质应是记录作用,支撑回溯(即按原路线返回);因此,基于其的二叉树遍历操作深刻的体现了其特性: 1.先入、后出,只...
  • sdulibh
  • sdulibh
  • 2016年01月24日 11:25
  • 1586

二叉树的非递归遍历及算法分析

用递归遍历的优点是算法简单明了,缺点也十分明显:对于栈的消耗比较大。尤其是在嵌入式应用中,嵌入式处理器资源往往有限。每次递归调用,都会涉及到通用寄存器、SP指针、PC指针等的压栈。当树的深度比较大时,...
  • u012914709
  • u012914709
  • 2015年03月20日 22:29
  • 694

经典算法学习——非递归遍历二叉树

我们知道二叉树是一种递归定义的数据结构,包括二叉树的创建、遍历、求树高、叶子节点个数等等。使用递归来进行以上操作非常的简便,相关实现请参考 《C语言实现二叉树的基本操作》。但是今天我们剑走偏锋,使用非...
  • CHENYUFENG1991
  • CHENYUFENG1991
  • 2016年10月03日 12:28
  • 2393

【C++】非递归的三种二叉树遍历

二叉树的遍历有三种方式,如下: (1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。 (2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树...
  • zzvnzz
  • zzvnzz
  • 2012年10月22日 17:36
  • 1220

【C++】非递归遍历二叉树

//以下出现的_root标示二叉树的根节点 //非递归先序遍历(根节点->左节点->右节点)思想:即用栈实现 //遍历二叉树的前提条件是:该二叉树不为空。在满足该条件的情况下,进行以下步骤: //1...
  • ZDF0414
  • ZDF0414
  • 2015年11月19日 21:12
  • 475

【数据结构与算法】二叉树递归与非递归遍历(附完整源码)

二叉树是一种非常重要的数据结构,很多其他数据机构都是基于二叉树的基础演变过来的。二叉树有前、中、后三种遍历方式,因为树的本身就是用递归定义的,因此采用递归的方法实现三种遍历,不仅代码简洁且容易理解,但...
  • mmc_maodun
  • mmc_maodun
  • 2013年10月24日 08:58
  • 40900

二叉树的非递归遍历(不用栈、O(1)空间)

本文主要解决一个问题,如何实现二叉树的前中后序遍历,有两个要求: O(1)空间复杂度,即只能使用常数空间; 二叉树的形状不能被破坏(中间过程允许改变其形状)。 通常,实现二叉树的前序(preorder...
  • cyuyanenen
  • cyuyanenen
  • 2016年06月09日 14:23
  • 2642

详细讲解二叉树三种遍历方式的递归与非递归实现

详细讲解二叉树三种遍历方式的递归与非递归实现 分类: 数据结构随笔2013-10-24 08:58 518人阅读 评论(14) 收藏 举报 二叉树是一种非常重要的数据结...
  • pi9nc
  • pi9nc
  • 2013年10月24日 23:44
  • 44666

二叉树的链式存储的递归和非递归遍历

今天和男友学了机械式转化非递归,然后就以树的遍历为契机写的代码 #include #include #include #include #include #include #include #i...
  • Appiloveyou
  • Appiloveyou
  • 2015年07月20日 21:03
  • 251
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉树的非递归遍历
举报原因:
原因补充:

(最多只允许输入30个字)