【ICPC-413】poj 2155 Matrix

本文详细介绍了如何使用二维树状数组解决区间更新和单点查询问题,并通过一个具体例子进行了说明。文章首先从一维情况入手,逐步推导出二维情况下的解决方案,最后给出了完整的代码实现。

点击打开poj 2155

思路: 二维树状数组+区间更新,单点查询

分析:

点击打开查看论文  建议先看看这篇论文,比较好理解

1 题目给定两种操作,第一种是给定左上角和右下角的下标,把这个子矩形里面的0/1进行互换,第二种是问某个点的值

2 我们先看一维的情况

 

假设题目给定的是一个长度为n的一维数组

那么我们现在要把区间[i,j]里面的值进行0/1互换

首先我们先来看一个定理,假设一个数原先为0,那么它经过奇数次的变换为1,偶数次的变换为0。

 

所以我们可以这么这么想[i,j]区间要变换那么就是相当于区间里面的值加1,那么等价于i这个点加1,j+1这个点减一

那么我们要判断某个点x的值的时候只要求出[1,x]的和mod2即可,为什么呢?

 

1 如果更新的区间是x的左边,那么对于x来说没有影响

2 如果x在更新的区间里面,那么就相当于加1

3 如果x在区间的右边,那么由于i加1,j减1那么抵消了

综上所述,可知结论成立

 

3 那么推广到二维的情况也是一样的

假设要更新的矩形的左上角为(x1,y1),右下角为(x2,y2)

 

那么我们可以根据一维的思想推广到二维里面,那么我们就相当于(x1,y1)点加1,(x1,y2+1)点减1 ,(x2+1,y1)点减1 ,(x2+1 , y2+1)点加1

那么我们要求某个点(x,y)的值的时候也就相当于求点(1,1)到点(x,y)的矩形的值mod2

 

代码:

 

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int MAXN = 1010;

int treeNum[MAXN][MAXN];

int lowbit(int x){
    return x&(-x);
}

long long getSum(int x , int y){
    long long sum = 0;
    for(int i = x ; i > 0 ; i -= lowbit(i))
        for(int j = y ; j > 0 ; j -= lowbit(j))
            sum += treeNum[i][j];
    return sum;
}

void add(int x , int y , int val){
    for(int i = x ; i < MAXN ; i += lowbit(i))
        for(int j = y ; j < MAXN ; j += lowbit(j))
            treeNum[i][j] += val;
}

void solve(int m){
    char ch;
    int x , y;
    int x1 , y1 , x2 , y2;
    memset(treeNum , 0 , sizeof(treeNum));
    while(m--){ 
        scanf("%c" , &ch); 
        if(ch == 'C'){
            scanf("%d%d" , &x1 , &y1);
            scanf("%d%d%*c" , &x2 , &y2);
            // update
            add(x1 , y1 , 1);
            add(x2+1 , y1 , -1);
            add(x1 , y2+1 , -1);
            add(x2+1 , y2+1 , 1);
        }
        else{
            scanf("%d%d%*c" , &x , &y);
            int ans = getSum(x , y);
            printf("%d\n" , ans%2);
        }
    }
}

int main(){
    int cas;
    int n , m;
    bool isFirst = true;
    scanf("%d" , &cas);
    while(cas){
        scanf("%d%d%*c" , &n , &m); 
        solve(m);
        if(--cas)
            puts("");
    }
    return 0;
}

 

 

 

 

 

标题基于Spring Boot的博客系统设计与实现研究AI更换标题第1章引言阐述基于Spring Boot的博客系统的研究背景、意义、国内外现状、方法及创新点。1.1研究背景与意义介绍博客系统发展现状及Spring Boot技术优势。1.2国内外研究现状分析国内外博客系统及Spring Boot应用的研究进展。1.3研究方法及创新点概述本文的研究方法及在博客系统设计上的创新。第2章相关理论总结Spring Boot、博客系统相关理论,为研究提供理论基础。2.1Spring Boot框架原理介绍Spring Boot的核心特性、自动配置机制及依赖管理。2.2Web开发相关技术阐述HTML、CSS、JavaScript等前端技术及数据库技术。2.3博客系统业务逻辑理论分析博客系统的用户管理、文章发布等业务逻辑。第3章博客系统需求分析对博客系统的功能、性能及安全性需求进行详细分析。3.1功能需求分析明确博客系统用户注册、登录、文章发布等功能需求。3.2性能需求分析分析系统响应时间、并发处理能力等性能需求。3.3安全性需求分析探讨系统数据保护、用户身份验证等安全性需求。第4章博客系统设计详细描述博客系统的架构设计、功能模块设计及数据库设计。4.1系统架构设计给出博客系统的整体架构,包括前端、后端及数据库架构。4.2功能模块设计详细设计用户管理、文章管理、评论管理等模块。4.3数据库设计设计数据库表结构,包括用户表、文章表、评论表等。第5章博客系统实现阐述博客系统的实现过程,包括环境搭建、代码实现及测试。5.1环境搭建与配置介绍开发环境搭建及Spring Boot等框架的配置。5.2代码实现与调试详细描述各功能模块的代码实现及调试过程。5.3系统测试与优化对系统进行功能测试、性能测试,并根据测试结果进行优化。第6章结论与展望总结研究成果,指出不足,并展望博客系统未来发展方向。6.1研
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值