思路:kruskal + 枚举生成树
分析:题目要求的是找到一个生成树使得生成树中“最大边-最小边”的值最小。如果这个图有n个点,那么这个生成树有n-1条边。那么现在就是考虑怎么去枚举这些生成树,我们想到了跟边有关的就是kruskal。我们只要按照边的大小排好序,然后去枚举最小的边的值,因为每一个生成树都要有n-1条边,所以只要枚举从0~(m-n+1)即可,然后按照求解最小生成树的方法去求每一个生成树,最后求出ans。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 10000
#define INF 0xFFFFFFF
int n , m , flag;
int father[MAXN];
int rank[MAXN];
struct Edge{
int x;
int y;
int value;
}e[MAXN];
/*排序*/
bool cmp(Edge e1 , Edge e2){
return e1.value < e2.value;
}
/*并查集的初始化*/
void init_Set(){
for(int i = 1 ; i <= n ; i++){
father[i] = i;
rank[i] = 0;
}
}
/*并查集的查找*/
int find_Set(int x){
if(x != father[x])
father[x] = find_Set(father[x]);
return father[x];
}
/*并查集的合并*/
void union_Set(int x , int y){
if(rank[x] > rank[y])
father[y] = x;
else{
if(rank[x] == rank[y])
rank[y]++;
father[x] = y;
}
}
/*判断当前的生成树是否合法*/
bool judge(){
int root = find_Set(1);
for(int i = 2 ; i <= n ; i++){
if(find_Set(i) != root)
return false;
}
return true;
}
/*kruskal的算法*/
void kruskal(){
int ans = INF;
int min , max;
sort(e , e+m ,cmp);
for(int i = 0 ; i <= (m-n+1) ; i++){
init_Set();/*每一次都进行初始化*/
min = INF;/*初始化最小值边*/
max = 0;/*初始化最大值的边*/
for(int j = i ; j < m ; j++){
int root_x = find_Set(e[j].x);
int root_y = find_Set(e[j].y);
if(root_x != root_y){
union_Set(root_x , root_y);
if(min > e[j].value)
min = e[j].value;
if(max < e[j].value)
max = e[j].value;
}
}
if(judge()){/*如果是一个合法的生成树*/
flag = 1;
ans = ans < (max-min) ? ans : (max-min);/*更新ans*/
}
}
if(flag)
printf("%d\n" , ans);
else
printf("-1\n");
}
int main(){
while(scanf("%d%d" , &n , &m) &&n+m){
flag = 0;
for(int i = 0 ; i < m ; i++)
scanf("%d%d%d" , &e[i].x , &e[i].y , &e[i].value);
kruskal();
}
return 0;
}