点击打开链接poj1639
思路:最小k度限制生成树
解题步骤:
1. 先求出最小 m 度限制生成树:
原图中去掉和 V0 相连的所有边,得到 m 个连通分量,则这 m 个连通分量必须通过 v0 来连接,所以,在图 G 的所有生成树中 dT(v0)≥m 。也就是说,当 k<m 时,问题无解。对每个连通分量求一次最小生成树,对于每个连通分量 V’ ,用一条与 V0 直接连接的最小的边把它与 V0 点连接起来,使其整体成为一个生成树。于是,我们就得到了一个 m 度限制生成树,不难证明,这就是最小 m 度限制生成树。
2. 由最小 m 度限制生成树得到最小 m+1 度限制生成树:
连接和 V0 相邻的点 v ,则可以知道一定会有一个环出现(因为原来是一个生成树),只要找到这个环上的最大权边(不能与 v0 点直接相连)并删除,就可以得到一个 m+1 度限制生成树,枚举所有和 V0 相邻点 v ,找到替换后,增加权值最小的一次替换 (当然,找不到这样的边时,就说明已经求出) ,就可以求得 m+1 度限制生成树。如果每添加一条边,都需要对环上的边一一枚举,时间复杂度将比较高(但这个题数据比较小,所以这样也没问题,事实上,直接枚举都能过这个题),这里,用动态规划解决。设 Best(v) 为路径 v0—v 上与 v0 无关联且权值最大的边。定义 father(v) 为 v 的父结点,由此可以得到动态转移方程: Best(v)=max(Best(father(v)),ω(father(v),v)) ,边界条件为 Best[v0]=-∞ (因为我们每次寻找的是最大边,所以 -∞ 不会被考虑) ,Best[v’]=-∞| (v0,v’)∈E(T) 。这个可以用dfs做到
3. 当 dT(v0)=k 时停止(即当 V0 的度为 k 的时候停止),但不一定 k 的时候最优。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<map>
using namespace std;
#define MAXN 30
#define INF 0x7FFFFFFF
int n , k , ans , cnt;/*边的长度n和k度 , cnt表示有几个点*/
int vis[MAXN];/*标记点i是否加入了生成树*/
int mark[MAXN];/*在prime算法里面会用到*/
int pre[MAXN];/*点i的前驱节点*/
int father[MAXN];/*生成树中父节点的编号*/
int best[MAXN];/*记录点i到限制点并且和限制点没有关联的最大边的点的编号*/
int edge[MAXN][MAXN];/*用来表示边是否已在生成树中*/
int G[MAXN][MAXN];/*保存两点之间的权值*/
int lowcost[MAXN];
map<string , int>m;
/*初始化G*/
void init(){
for(int i = 0 ; i < MAXN ; i++){
for(int j = 0 ; j < MAXN ; j++)
G[i][j] = INF;
}
}
/*dfs把一个连通分支里面的点全部指向s*/
void dfs(int s){
for(int i = 1 ; i <= cnt ; i++){
if(mark[i] && edge[i][s]){
father[i] = s;
mark[i] = 0;
dfs(i);
}
}
}
/*prime算法*/
int prime(int s){
int sum , pos;
memset(mark , 0 ,sizeof(mark));
vis[s] = mark[s] = 1;
sum = 0;
for(int i = 1 ; i <= cnt ; i++){
lowcost[i] = G[s][i];
pre[i] = s;
}
for(int i = 1 ; i <= cnt ; i++){
pos = -1;
for(int j = 1 ; j <= cnt ; j++){
if(!vis[j] && !mark[j]){
if(pos == -1 || lowcost[j] < lowcost[pos])
pos = j;
}
}
if(pos == -1)
break;
vis[pos] = mark[pos] = 1;
edge[pre[pos]][pos] = edge[pos][pre[pos]] = 1;
sum += G[pre[pos]][pos];
for(int j = 1 ; j <= cnt ; j++){
if(!vis[j] && !mark[j]){
if(lowcost[j] > G[pos][j]){
lowcost[j] = G[pos][j];
pre[j] = pos;
}
}
}
}
/*一下是找到一条最小权值的边把该连通分量连接到限制点1*/
int min = INF;
int root = -1;/*要和1点连接的点*/
for(int i = 1 ; i <= cnt ; i++){
if(mark[i] && G[i][1] < min){
min = G[i][1];
root = i;
}
}
/*把当前的连通*/
mark[root] = 0;
dfs(root);
father[root] = 1;
return sum+min;
}
/*求best数组函数,求解s-1路径上权值最大的边的终点*/
int Best(int s){
if(father[s] == 1)
return -1;
if(best[s] != -1)
return best[s];
int tmp = Best(father[s]);
if(tmp != -1 && G[father[tmp]][tmp] > G[father[s]][s])
best[s] = tmp;
else
best[s] = s;
return best[s];
}
void solve(){
memset(father , -1 , sizeof(father));
memset(vis , 0 , sizeof(vis));
memset(edge , 0 , sizeof(edge));
vis[1] = 1;/*把1这个点当成限制点*/
int num = 0;/*把1限制点去掉以后的连通分支的个数*/
ans = 0;
/*先求最小num度限制树*/
for(int i = 1 ; i <= cnt ; i++){
if(!vis[i]){
num++;
ans += prime(i);
}
}
/*再由m度限制生成树->k度生成树*/
int minAdd;/*增加一条边改变的权值大小*/
int change;/*记录回路上要删除的边的终点*/
/*循环k-num次*/
for(int i = num+1 ; i <= k && i <= cnt ; i++){
memset(best , -1 , sizeof(best));/*初始化为-1*/
/*求出best数组*/
for(int j =1 ; j <= cnt ; j++){
if(best[j] == -1 && father[j] != 1)
Best(j);
}
minAdd = INF;/*初始化为INF*/
for(int j = 1 ; j <= cnt ; j++){
if(G[1][j] != INF && father[j] != 1){
int a = best[j];
int b = father[best[j]];
int tmp = G[1][j]-G[a][b];
if(tmp < minAdd){
minAdd = tmp;
change = j;
}
}
}
if(minAdd >= 0)/*要加上这一句*/
break;
ans += minAdd;
int a = best[change];
int b = father[change];
G[a][b] = G[b][a] = INF;/*把这一条边去掉就是赋值为INF*/
father[a] = 1;/*把a的父亲节点指向为限制点1*/
G[a][1] = G[1][a] = G[change][1];/*新增加的一条边的权值*/
G[1][change] = G[change][1] = INF;
}
}
int main(){
int v;
string str1 , str2;
m.clear();
m["Park"] = 1;
cnt = 1;/*初始化有一个点*/
init();/*初始化*/
scanf("%d" , &n);
for(int i = 0 ; i < n ; i++){
cin>>str1>>str2>>v;
int a = m[str1];
int b = m[str2];
if(!a)
m[str1] = a = ++cnt;
if(!b)
m[str2] = b = ++cnt;
if(G[a][b] > v)/*a b 为点的编号,所以上面不能直接把m[str1] = 1*/
G[a][b] = G[b][a] = v;
}
scanf("%d" , &k);
solve();
printf("Total miles driven: %d\n" , ans);
return 0;
}