问题描述:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height =
[2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area =
10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
基本思想:
最基本的方法是穷举所有可能的左右边界组合,复杂度为O(n^2);
现在考虑如果左边界固定,右边界h[k]>h[k-1],那么右边界为k时的面接一定大于等于右边界为k-1;所以对于连续递增的一段区间,我们可以暂时不考虑其作为右边界的情况。当出现h[k]<h[k-1]时,穷举左边界,找到最大的面积。这对上面穷举法做了剪枝。
更简单的一种方法是:当遇到h[k]<h[k-1]时,回退计算前面比h[k]更高的挡板组成的矩形面积,并更新最大的面积,直到前一个挡板比h[k]小。可以结合代码理解。
代码:
int largestRectangleArea(vector<int> &height) { //c++
if(height.size() == 0)
return 0;
height.push_back(0);
int max = 0;
vector<int> stack;
for(int i = 0; i < height.size(); i++)
{
while(stack.size() >0&&height[stack.back()]>height[i])
{
int h = height[stack.back()];
stack.pop_back();
int left = stack.size()>0?stack.back():-1;
if(h*(i-1-left)>max)
max = h*(i-1-left);
}
stack.push_back(i);
}
return max;
}
本文介绍了一种高效计算直方图中最大矩形面积的算法。通过优化穷举法,利用栈的数据结构来减少不必要的计算,实现了O(n)的时间复杂度。文中详细解释了算法的基本思想,并给出了具体的实现代码。
897

被折叠的 条评论
为什么被折叠?



