关闭

Android 之 远程图片获取和本地缓存

标签: androidfilenullcacheurlstring
836人阅读 评论(0) 收藏 举报
分类:

本文出之于网络,非本人撰写,原文地址点击打开链接

概述

对于客户端——服务器端应用,从远程获取图片算是经常要用的一个功能,而图片资源往往会消耗比较大的流量,对应用来说,如果处理不好这个问题,那会让用户很崩溃,不知不觉手机流量就用完了,等用户发现是你的应用消耗掉了他手机流量的话,那么可想而知你的应用将面临什么样的命运。

另外一个问题就是加载速度,如果应用中图片加载速度很慢的话,那么用户同样会等到崩溃。

那么如何处理好图片资源的获取和管理呢?

异步下载
本地缓存

异步下载

大家都知道,在android应用中UI线程5秒没响应的话就会抛出无响应异常,对于远程获取大的资源来说,这种异常还是很容易就会抛出来的,那么怎么避免这种问题的产生。在android中提供两种方法来做这件事情:

启动一个新的线程来获取资源,完成后通过Handler机制发送消息,并在UI线程中处理消息,从而达到在异步线程中获取图片,然后通过Handler Message来更新UI线程的过程。
使用android中提供的AsyncTask来完成。

                                      

具体的做法这里就不介绍了,查下API就可以了,或者是google、baidu下。这里主要来说本地缓存。

本地缓存

对于图片资源来说,你不可能让应用每次获取的时候都重新到远程去下载(ListView),这样会浪费资源,但是你又不能让所有图片资源都放到内存中去(虽然这样加载会比较快),因为图片资源往往会占用很大的内存空间,容易导致OOM。那么如果下载下来的图片保存到SDCard中,下次直接从SDCard上去获取呢?这也是一种做法,我看了下,还是有不少应用采用这种方式的。采用LRU等一些算法可以保证sdcard被占用的空间只有一小部分,这样既保证了图片的加载、节省了流量、又使SDCard的空间只占用了一小部分。另外一种做法是资源直接保存在内存中,然后设置过期时间和LRU规则。

sdcard保存:

                                                 

在sdcard上开辟一定的空间,需要先判断sdcard上剩余空间是否足够,如果足够的话就可以开辟一些空间,比如10M
当需要获取图片时,就先从sdcard上的目录中去找,如果找到的话,使用该图片,并更新图片最后被使用的时间。如果找不到,通过URL去download
去服务器端下载图片,如果下载成功了,放入到sdcard上,并使用,如果失败了,应该有重试机制。比如3次。
下载成功后保存到sdcard上,需要先判断10M空间是否已经用完,如果没有用完就保存,如果空间不足就根据LRU规则删除一些最近没有被用户的资源。

关键代码:

保存图片到SD卡上

private void saveBmpToSd(Bitmap bm, Stringurl) {
        if (bm == null) {
            Log.w(TAG, " trying to savenull bitmap");
            return;
        }
         //判断sdcard上的空间
        if (FREE_SD_SPACE_NEEDED_TO_CACHE >freeSpaceOnSd()) {
            Log.w(TAG, "Low free space onsd, do not cache");
            return;
        }
        String filename =convertUrlToFileName(url);
        String dir = getDirectory(filename);
        File file = new File(dir +"/" + filename);
        try {
            file.createNewFile();
            OutputStream outStream = newFileOutputStream(file);
           bm.compress(Bitmap.CompressFormat.JPEG, 100, outStream);
            outStream.flush();
            outStream.close();
            Log.i(TAG, "Image saved tosd");
        } catch (FileNotFoundException e) {
            Log.w(TAG,"FileNotFoundException");
        } catch (IOException e) {
            Log.w(TAG,"IOException");
        }
}

计算sdcard上的空间:

 /**
     * 计算sdcard上的剩余空间
     * @return
     */
    private int freeSpaceOnSd() {
        StatFs stat = newStatFs(Environment.getExternalStorageDirectory() .getPath());
        double sdFreeMB = ((double)stat.getAvailableBlocks() * (double) stat.getBlockSize()) / MB;
        return (int) sdFreeMB;
    }

修改文件的最后修改时间

    /**
     * 修改文件的最后修改时间
     * @param dir
     * @param fileName
     */
    private void updateFileTime(String dir,String fileName) {
        File file = new File(dir,fileName);       
        long newModifiedTime =System.currentTimeMillis();
        file.setLastModified(newModifiedTime);
    }

本地缓存优化

     /**
     *计算存储目录下的文件大小,当文件总大小大于规定的CACHE_SIZE或者sdcard剩余空间小于FREE_SD_SPACE_NEEDED_TO_CACHE的规定
     * 那么删除40%最近没有被使用的文件
     * @param dirPath
     * @param filename
     */
    private void removeCache(String dirPath) {
        File dir = new File(dirPath);
        File[] files = dir.listFiles();
        if (files == null) {
            return;
        }
        int dirSize = 0;
        for (int i = 0; i < files.length;i++) {
            if(files[i].getName().contains(WHOLESALE_CONV)) {
                dirSize += files[i].length();
            }
        }
        if (dirSize > CACHE_SIZE * MB ||FREE_SD_SPACE_NEEDED_TO_CACHE > freeSpaceOnSd()) {
            int removeFactor = (int) ((0.4 *files.length) + 1);
 
            Arrays.sort(files, newFileLastModifSort());
 
            Log.i(TAG, "Clear some expiredcache files ");
 
            for (int i = 0; i <removeFactor; i++) {
 
                if(files[i].getName().contains(WHOLESALE_CONV)) {
 
                    files[i].delete();             
 
                }
 
            }
 
        }
 
    }
    /**
     * 删除过期文件
     * @param dirPath
     * @param filename
     */
    private void removeExpiredCache(StringdirPath, String filename) {
 
        File file = new File(dirPath,filename);
 
        if (System.currentTimeMillis() -file.lastModified() > mTimeDiff) {
 
            Log.i(TAG, "Clear some expiredcache files ");
 
            file.delete();
 
        }
 
    }

文件使用时间排序

/**
 * TODO 根据文件的最后修改时间进行排序 *
 */
classFileLastModifSort implements Comparator<File>{
    public int compare(File arg0, File arg1) {
        if (arg0.lastModified() >arg1.lastModified()) {
            return 1;
        } else if (arg0.lastModified() ==arg1.lastModified()) {
            return 0;
        } else {
            return -1;
        }
    }
}

内存保存:

在内存中保存的话,只能保存一定的量,而不能一直往里面放,需要设置数据的过期时间、LRU等算法。这里有一个方法是把常用的数据放到一个缓存中(A),不常用的放到另外一个缓存中(B)。当要获取数据时先从A中去获取,如果A中不存在那么再去B中获取。B中的数据主要是A中LRU出来的数据,这里的内存回收主要针对B内存,从而保持A中的数据可以有效的被命中。

                                  

先定义A缓存:

private final HashMap<String, Bitmap>mHardBitmapCache = new LinkedHashMap<String, Bitmap>(HARD_CACHE_CAPACITY/ 2, 0.75f, true) {
        @Override
        protected booleanremoveEldestEntry(LinkedHashMap.Entry<String, Bitmap> eldest) {
            if (size() >HARD_CACHE_CAPACITY) {
               //当map的size大于30时,把最近不常用的key放到mSoftBitmapCache中,从而保证mHardBitmapCache的效率
               mSoftBitmapCache.put(eldest.getKey(), newSoftReference<Bitmap>(eldest.getValue()));
                return true;
            } else
                return false;
        }
};

再定于B缓存:

   /**
     *当mHardBitmapCache的key大于30的时候,会根据LRU算法把最近没有被使用的key放入到这个缓存中。
     *Bitmap使用了SoftReference,当内存空间不足时,此cache中的bitmap会被垃圾回收掉
     */
    private final staticConcurrentHashMap<String, SoftReference<Bitmap>> mSoftBitmapCache =new ConcurrentHashMap<String,SoftReference<Bitmap>>(HARD_CACHE_CAPACITY / 2);

从缓存中获取数据:

/**
     * 从缓存中获取图片
     */
    private Bitmap getBitmapFromCache(Stringurl) {
        // 先从mHardBitmapCache缓存中获取
        synchronized (mHardBitmapCache) {
            final Bitmap bitmap =mHardBitmapCache.get(url);
            if (bitmap != null) {
                //如果找到的话,把元素移到linkedhashmap的最前面,从而保证在LRU算法中是最后被删除
                mHardBitmapCache.remove(url);
                mHardBitmapCache.put(url,bitmap);
                return bitmap;
            }
        }
        //如果mHardBitmapCache中找不到,到mSoftBitmapCache中找
        SoftReference<Bitmap>bitmapReference = mSoftBitmapCache.get(url);
        if (bitmapReference != null) {
            final Bitmap bitmap =bitmapReference.get();
            if (bitmap != null) {
                return bitmap;
            } else {
                mSoftBitmapCache.remove(url);
            }
        }
        return null;
}

如果缓存中不存在,那么就只能去服务器端去下载:

 /**
     * 异步下载图片
     */
    class ImageDownloaderTask extendsAsyncTask<String, Void, Bitmap> {
        private static final int IO_BUFFER_SIZE= 4 * 1024;
        private String url;
        private finalWeakReference<ImageView> imageViewReference;
        public ImageDownloaderTask(ImageViewimageView) {
            imageViewReference = newWeakReference<ImageView>(imageView);
        }
 
       @Override
        protected BitmapdoInBackground(String... params) {
            final AndroidHttpClient client =AndroidHttpClient.newInstance("Android");
            url = params[0];
            final HttpGet getRequest = newHttpGet(url);
            try {
                HttpResponse response =client.execute(getRequest);
                final int statusCode =response.getStatusLine().getStatusCode();
                if (statusCode !=HttpStatus.SC_OK) {
                    Log.w(TAG, "从" +url + "中下载图片时出错!,错误码:" + statusCode);
                    return null;
                }
                final HttpEntity entity =response.getEntity();
                if (entity != null) {
                    InputStream inputStream =null;
                    OutputStream outputStream =null;
                    try {
                        inputStream =entity.getContent();
                        finalByteArrayOutputStream dataStream = new ByteArrayOutputStream();
                        outputStream = newBufferedOutputStream(dataStream, IO_BUFFER_SIZE);
                        copy(inputStream,outputStream);
                        outputStream.flush();
                        final byte[] data =dataStream.toByteArray();
                        final Bitmap bitmap =BitmapFactory.decodeByteArray(data, 0, data.length);
                        return bitmap;
                    } finally {
                        if (inputStream !=null) {
                           inputStream.close();
                        }
                        if (outputStream !=null) {
                           outputStream.close();
                        }
                       entity.consumeContent();
                    }
                }
            } catch (IOException e) {
                getRequest.abort();
                Log.w(TAG, "I/O errorwhile retrieving bitmap from " + url, e);
            } catch (IllegalStateException e) {
                getRequest.abort();
                Log.w(TAG, "Incorrect URL:" + url);
            } catch (Exception e) {
                getRequest.abort();
                Log.w(TAG, "Error whileretrieving bitmap from " + url, e);
            } finally {
                if (client != null) {
                    client.close();
                }
            }
            return null;
 }

这是两种做法,还有一些应用在下载的时候使用了线程池和消息队列MQ,对于图片下载的效率要更好一些。有兴趣的同学可以看下。

总结

对于远程图片等相对比较大的资源一定要在异步线程中去获取

本地做缓存


0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:359255次
    • 积分:2379
    • 等级:
    • 排名:第15574名
    • 原创:10篇
    • 转载:15篇
    • 译文:5篇
    • 评论:76条
    文章分类
    最新评论