305人阅读 评论(0)

﻿﻿

# Caocao's Bridges

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1998    Accepted Submission(s): 713

Problem Description
Caocao was defeated by Zhuge Liang and Zhou Yu in the battle of Chibi. But he wouldn't give up. Caocao's army still was not good at water battles, so he came up with another idea. He built many islands in the Changjiang river, and based on those islands, Caocao's army could easily attack Zhou Yu's troop. Caocao also built bridges connecting islands. If all islands were connected by bridges, Caocao's army could be deployed very conveniently among those islands. Zhou Yu couldn't stand with that, so he wanted to destroy some Caocao's bridges so one or more islands would be seperated from other islands. But Zhou Yu had only one bomb which was left by Zhuge Liang, so he could only destroy one bridge. Zhou Yu must send someone carrying the bomb to destroy the bridge. There might be guards on bridges. The soldier number of the bombing team couldn't be less than the guard number of a bridge, or the mission would fail. Please figure out as least how many soldiers Zhou Yu have to sent to complete the island seperating mission.

Input
There are no more than 12 test cases.

In each test case:

The first line contains two integers, N and M, meaning that there are N islands and M bridges. All the islands are numbered from 1 to N. ( 2 <= N <= 1000, 0 < M <= N2 )

Next M lines describes M bridges. Each line contains three integers U,V and W, meaning that there is a bridge connecting island U and island V, and there are W guards on that bridge. ( U ≠ V and 0 <= W <= 10,000 )

The input ends with N = 0 and M = 0.

Output
For each test case, print the minimum soldier number Zhou Yu had to send to complete the mission. If Zhou Yu couldn't succeed any way, print -1 instead.

Sample Input
3 3
1 2 7
2 3 4
3 1 4
3 2
1 2 7
2 3 4
0 0

Sample Output
-1
4

tarjan算法：

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 1000+10
#define MAXM 2000000+10
#define INF 1000000
using namespace std;
struct Edge
{
int from, to, val, next, num;//num标记是否有重边
bool cut;
}edge[MAXM];
int low[MAXN], dfn[MAXN];
int recdfn;
bool exist;
int N, M;
void init()
{
top = 0;
}
void addEdge(int u, int v, int w)
{
int i;
for(i = head[u]; i != -1; i = edge[i].next)
{
if(edge[i].to == v)
break;
}
if(i != -1)
edge[i].num = 1;
else
{
Edge E = {u, v, w, head[u], 0, 0};
edge[top] = E;
}
}
void getMap()
{
int u, v, w;
while(M--)
{
scanf("%d%d%d", &u, &v, &w);
}
}
void tarjan(int u, int fa)
{
low[u] = dfn[u] = ++recdfn;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(v == fa)
continue;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u] && edge[i].num == 0)
edge[i].cut = edge[i^1].cut = true;
}
else low[u] = min(low[u], dfn[v]);
}
}
void find_edgecut()
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
recdfn = 0;
exist = true;
tarjan(1, 1);
for(int i = 1; i <= N; i++)
{
if(!dfn[i])
{
exist = false;
return ;
}
}
}
void solve()
{
if(!exist)
printf("0\n");
else
{
int ans = INF;
for(int i = 0; i < top; i++)
{
if(edge[i].cut)
ans = min(ans, edge[i].val);
}
if(ans == INF)
printf("-1\n");
else if(ans == 0)
printf("1\n");
else
printf("%d\n", ans);
}
}
int main()
{
while(scanf("%d%d", &N, &M), N||M)
{
init();
getMap();
find_edgecut();
solve();
}
return 0;
}

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 1000+10
#define MAXM 1000000+10
#define INF 10000+10
using namespace std;
struct Edge
{
int from, to, val, next, num, cut;
}edge[MAXM];
int low[MAXN];
int dfn[MAXN];//记录点在DFS树中的深度优先数
int recdfn;
bool exist;
void init()
{
top = 0;
}
void addEdge(int u, int v, int w)
{
Edge E = {u, v, w, head[u], 0, 0};
edge[top] = E;
Edge E1 = {v, u, w, head[v], 0, 0};
edge[top] = E1;
}
void getMap(int m)
{
int a, b, c;
while(m--)
{
scanf("%d%d%d", &a, &b, &c);
}
}
void tarjan(int u, int fa)
{
low[u] = dfn[u] = ++recdfn;
int have  = 0;
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(!have && v == fa)//重边 一定不是桥  重边有效
{
have++;
continue;
}
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u] && edge[i].num == 0)//u -> v为桥
{
edge[i].cut = true;
edge[i^1].cut = true;
}
}
else low[u] = min(low[u], dfn[v]);
}
}
void find_edgecut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
exist = true;
recdfn = 0;
tarjan(l, l);//连通图 只需一次就能遍历完所有的点
for(int i = l; i <= r; i++)
{
if(!dfn[i])//若还存在点没有遍历到 说明图本身就是非连通通图
{
exist = false;
return ;
}
}
}
int main()
{
int N, M;
while(scanf("%d%d", &N, &M), N||M)
{
init();
getMap(M);
find_edgecut(1, N);
if(!exist)
printf("0\n");
else
{
int ans = INF;
for(int i = 0; i < top; i++)
{
if(edge[i].cut)
ans = min(ans, edge[i].val);
}
if(ans == INF)//找不到桥
printf("-1\n");
else if(ans == 0)
printf("1\n");//至少需要一个人。。。
else
printf("%d\n", ans);
}
}
return 0;
}


0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：508662次
• 积分：19476
• 等级：
• 排名：第450名
• 原创：1484篇
• 转载：12篇
• 译文：0篇
• 评论：161条
文章分类