关闭

lightoj 1026 - Critical Links 【DFS求块 + 边双连通求桥】

393人阅读 评论(0) 收藏 举报
分类:

1026 - Critical Links
Time Limit: 2 second(s) Memory Limit: 32 MB

In a computer network a link L, which interconnects two servers, is considered critical if there are at least two servers A and B such that all network interconnection paths between A and B pass through L. Removing a critical link generates two disjoint sub-networks such that any two servers of a sub-network are interconnected. For example, the network shown in figure 1 has three critical links that are marked red: 0 - 13 - 4 and 6 - 7 in figure 2.

Figure 1: Original Graph

Figure 2: The Critical Links

It is known that:

1.      The connection links are bi-directional.

2.      A server is not directly connected to itself.

3.      Two servers are interconnected if they are directly connected or if they are interconnected with the same server.

4.      The network can have stand-alone sub-networks.

Write a program that finds all critical links of a given computer network.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

Each case starts with a blank line. The next line will contain n (0 ≤ n ≤ 10000) denoting the number of nodes. Each of the next n lines will contain some integers in the following format:

u (k) v1 v2 ... vk

Where u is the node identifier, k is the number of adjacent nodes; v1, v2 ... vk are the adjacent nodes of u. You can assume that there are at most 100000 edges in total in a case. Dataset is huge, so use faster i/o methods.

Output

For each case, print the case number first. Then you should print the number of critical links and the critical links, one link per line, starting from the beginning of the line, as shown in the sample output below. The links are listed in ascending order according to their first element and then second element. Since the graph is bidirectional, print a link u v if u < v.

Sample Input

Output for Sample Input

3

 

8

0 (1) 1

1 (3) 2 0 3

2 (2) 1 3

3 (3) 1 2 4

4 (1) 3

7 (1) 6

6 (1) 7

5 (0)

 

0

 

2

0 (1) 1

1 (1) 0

Case 1:

3 critical links

0 - 1

3 - 4

6 - 7

Case 2:

0 critical links

Case 3:

1 critical links

0 - 1

Note

Dataset is huge, use faster I/O methods.


SPECIAL THANKS: JANE ALAM JAN (MODIFIED DESCRIPTION, DATASET)



题意:给定n个节点的无向图,让你求出所有的桥。注意,图不连通时求每个块的桥。


思路:DFS找到所有块,标记块里面的点。对当前块求桥。


AC代码:


#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <vector>
#define INF 0x3f3f3f3f
#define eps 1e-4
#define MAXN (10000+10)
#define MAXM (1000000+100)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while(a--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 100000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
using namespace std;
struct Edge{
    int from, to, next;
};
Edge edge[MAXM], num[MAXM];
int head[MAXN], edgenum;
bool cmp(Edge a, Edge b)
{
    if(a.from != b.from)
        return a.from < b.from;
    else
        return a.to < b.to;
}
int dfs_clock, bridge, n;
void init()
{
    CLR(head, -1);
    edgenum = 0;
}
void addEdge(int u, int v)
{
    Edge E = {u, v, head[u]};
    edge[edgenum] = E;
    head[u] = edgenum++;
}
void getMap()
{
    Ri(n); init();
    for(int i = 0; i < n; i++)
    {
        int a, b, k; Ri(a);
        scanf(" (%d)", &k);
        while(k--)
        {
            Ri(b);
            if(b > a)
            {
                addEdge(a, b);
                addEdge(b, a);
            }
        }
    }
}
stack<int> S;
bool Instack[MAXN];
int low[MAXN], dfn[MAXN];
bool used[MAXN], mark[MAXN];
void tarjan(int u, int fa)
{
    int v;
    low[u] = dfn[u] = ++dfs_clock;
    S.push(u); Instack[u] = true;
    int have = 1;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if(!mark[v]) continue;
        if(v == fa && have)
        {
            have = 0;
            continue;
        }
        if(!dfn[v])
        {
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if(low[v] > dfn[u])
            {
                num[bridge].from = min(u, v);
                num[bridge++].to = max(u, v);
            }
        }
        else if(Instack[v])
            low[u] = min(low[u], dfn[v]);
    }
    if(low[u] == dfn[u])
    {
        for(;;)
        {
            v = S.top(); S.pop();
            Instack[v] = false;
            if(v == u) break;
        }
    }
}
void DFS(int u)
{
    used[u] = mark[u] = true;
    for(int i = head[u]; i != -1; i = edge[i].next)
        if(!mark[edge[i].to])
            DFS(edge[i].to);
}
void find_cut(int l, int r)
{
    CLR(low, 0); CLR(dfn, 0); CLR(Instack, false);
    dfs_clock = 0;
    for(int i = l; i <= r; i++)
        if(mark[i] && !dfn[i])
            tarjan(i, -1);
}
int kcase = 1;
void solve()
{
    CLR(used, false); bridge = 0;
    for(int i = 0; i < n; i++)
    {
        if(!used[i])
        {
            CLR(mark, false);
            DFS(i);
            find_cut(0, n-1);
        }
    }
    printf("Case %d:\n", kcase++);
    printf("%d critical links\n", bridge);
    sort(num, num+bridge, cmp);
    for(int i = 0; i < bridge; i++)
        printf("%d - %d\n", num[i].from, num[i].to);
}
int main()
{
    int t; Ri(t);
    W(t)
    {
        getMap();
        solve();
    }
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:480028次
    • 积分:19204
    • 等级:
    • 排名:第447名
    • 原创:1484篇
    • 转载:12篇
    • 译文:0篇
    • 评论:160条
    文章分类