拓扑学简介(一)

原创 2008年10月02日 00:17:00
导读:


拓扑学是现代数学的一个重要分支,同时是渗透到整个现代数学的思想方法。“拓扑”一词是音译自德文 topologie,最初由高斯的学生李斯亭引入 (1848年),用来表示一个新的研究方向,“位置的几何”。中国第一个拓扑学家是江泽涵,他早年在哈佛大学师从数学大师莫尔斯,学成后为中国带来了这个新学科(1931年)。


拓扑学经常被描述成 “橡皮泥的几何”,就是说它研究物体在连续变形下不变的性质。比如,所有多边形和圆周在拓扑意义下是一样的,因为多边形可以通过连续变形变成圆周,右边这个图上,一个茶杯可以连续地变为一个实心环,在拓扑学家眼里,它们是同一个对象。而圆周和线段在拓扑意义下就不一样,因为把圆周变成线段总会断裂(不连续)。为什么要研究这种性质呢?这就要追溯到几百年以前先贤们的遐想了。好在拓扑学比微积分还是新得多,用不着 “言必称希腊”,只要从莱布尼兹开始就行。


 



莱布尼兹作为微积分的主要奠基者之一,对抽象符号有特殊的偏好。经过他深思熟虑以后的微积分符号系统,比如微商符号 dy/dx,不久就把牛顿的符号系统比下去了。在1679年的时候,莱布尼兹突发奇想,尝试用抽象符号代表物体的几何性质,用以将几何性质代数化,通过符号的代数运算,由已有的几何性质产生新的几何性质。他不满意笛卡尔的坐标系方法,认为有些几何性质是跟几何体的大小无关的,从而不能直接在坐标系中予以体现。可能是由于这个想法太超前了,在他自己的脑子里也还只是混沌一片,而当年听到他这个想法的很多人,比如惠更斯,干脆就不予理睬。



莱布尼兹在三百多年前想要建立的,是现在称为“代数拓扑”的学问,中间经过欧拉,柯西,高斯,李斯亭,莫比乌斯,克莱因,特别是黎曼和贝迪的思考和尝试,终于在1920世纪之交,由法国天才数学家庞卡莱悟到了。在这些先驱中,高斯名气最大,被称为数学王子;大家可能不太熟悉黎曼,其实他同高斯在数学史上的地位是相当的,他在19世纪中叶的很多想法直到现在还有着巨大的影响;莫比乌斯,他在数学上有很多贡献,不过他为世人所知还多半是因为用他的名字命名的奇怪曲面:莫比乌斯带。左边这个图就是莫比乌斯带,它的重要特性是,虽然在每个局部都可以说正面反面,但整体上不能分隔成正面和反面。这种曲面叫做 “单侧曲面”。在这样的曲面上散步一定很别扭,哈哈。


标签:,
本文转自
http://songshuhui.net/archives/1633.html
版权声明:本文为博主原创文章,未经博主允许不得转载。

拓扑学初步

0. 基本概念 & 定义 同胚:在拓扑学中,两个流形,如果可以通过弯曲、延展、剪切(只要最终完全沿着当初剪开的缝隙再重新粘贴起来)等操作把其中一个变为另一个,则认为两者是同胚的。如:圆和正方形是同胚的...
  • lanchunhui
  • lanchunhui
  • 2016年08月25日 15:27
  • 873

神经网络和流形、拓扑学

一篇很有意思的文章:Neural Networks, Manifolds, and Topology 原文有不少动态图片和数学公式,不好复制,请点击下面的链接查看: 原文链接:http://colah...
  • rtygbwwwerr
  • rtygbwwwerr
  • 2016年02月29日 17:41
  • 1129

拓扑学(代数拓扑学)的有趣应用

代数几何学又是一次数形结合的典范,一次从现象到本质的探索。 1. 绳子谜题 墙有两个钉子, 按照通常的方法将画挂上去,如图所示,当一个钉子掉下 来时, 画还会挂在另一个钉子。问题: 如何将画挂...
  • lanchunhui
  • lanchunhui
  • 2016年08月27日 11:52
  • 1098

拓扑学

什么是拓扑学?  拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几...
  • chl033
  • chl033
  • 2008年10月31日 11:22
  • 1200

一般拓扑学--From百度(看了这个,终于明白什么是拓扑了)

用点集的方法研究拓扑不变量的拓扑分支。它的前身是点集拓扑学。点集拓扑学产生于19世纪。G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。190...
  • hejishan
  • hejishan
  • 2007年12月18日 05:43
  • 325

学了拓扑学,我猛然领悟到了儿时游戏的真谛……

小时候曾想,为什么一个人从屏幕左边跑出去,立即就从屏幕右端钻进来……现在我们知道了,因为游戏是在一个柱面上进行的……我有预感此日志又要火了 ...
  • matrix67
  • matrix67
  • 2009年02月24日 15:22
  • 690

编程到底要不要学好数学?

讨论“编程到底要不要学好数学”之类的帖子见的不少了,这其实是一大误区,相当于战士在质疑该不该用枪作战。数学在计算机图形学中的应用Greg Turk, August 1997“学习计算机图形学需要多少的...
  • song88
  • song88
  • 2008年02月16日 09:56
  • 737

拓扑学学习(一)

拓扑学的具体用处是什么,我
  • hunter_wwq
  • hunter_wwq
  • 2014年10月07日 10:29
  • 1283

经典学经:笨人学数学的方法

作为一个非科班出身的彻底的外行,学数学的一点经验分享给大家。  数学是什么?大部分中国人心目中的数学,其实按严格的分类,都属于应用数学。一句话:应用数学是用数字和公式描述客观世界的科学,研究的是客观...
  • u014032673
  • u014032673
  • 2015年02月26日 10:29
  • 767

一次拓扑问题的解决经历

问题介绍: 在起点和终点组成的连线的集合中,例如{a-b,a-c,c-d,d-f,f-a,b-d ,h-i,e-h,m-n …….}中如何找出有连接信息的节点组呢? 期待结果: 只要有连接线的节...
  • xiaozhaorui
  • xiaozhaorui
  • 2016年11月22日 15:24
  • 317
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:拓扑学简介(一)
举报原因:
原因补充:

(最多只允许输入30个字)