数据结构专项之Hash函数

转载 2007年10月14日 23:44:00
原贴:http://hunteagle.javaeye.com/blog/118551


数据结构专项之Hash函数

关键字:   ash    

数据结构专项之Hash函数 2007/01/13

作者:冲出宇宙 from Hour41 (www.hour41.com)

计算理论中,没有Hash函数的说法,只有单向函数的说法。所谓的单向函数,是一个复杂的定义,大家可以去看计算理论或者密码学方面的数据。用“人 类”的语言描述单向函数就是:如果某个函数在给定输入的时候,很容易计算出其结果来;而当给定结果的时候,很难计算出输入来,这就是单项函数。各种加密函 数都可以被认为是单向函数的逼近。Hash函数(或者成为散列函数)也可以看成是单向函数的一个逼近。即它接近于满足单向函数的定义。

Hash函数还有另外的含义。实际中的Hash函数是指把一个大范围映射到一个小范围。把大范围映射到一个小范围的目的往往是为了节省空间,使得数据容易保存。除此以外,Hash函数往往应用于查找上。所以,在考虑使用Hash函数之前,需要明白它的几个限制:

1. Hash的主要原理就是把大范围映射到小范围;所以,你输入的实际值的个数必须和小范围相当或者比它更小。不然冲突就会很多。
2. 由于Hash逼近单向函数;所以,你可以用它来对数据进行加密。
3. 不同的应用对Hash函数有着不同的要求;比如,用于加密的Hash函数主要考虑它和单项函数的差距,而用于查找的Hash函数主要考虑它映射到小范围的冲突率。

应用于加密的Hash函数已经探讨过太多了,在作者的博客里面有更详细的介绍。所以,本文只探讨用于查找的Hash函数。

Hash函数应用的主要对象是数组(比如,字符串),而其目标一般是一个int类型。以下我们都按照这种方式来说明。

一般的说,Hash函数可以简单的划分为如下几类:
1. 加法Hash;
2. 位运算Hash;
3. 乘法Hash;
4. 除法Hash;
5. 查表Hash;
6. 混合Hash;
下面详细的介绍以上各种方式在实际中的运用。

一 加法Hash

所谓的加法Hash就是把输入元素一个一个的加起来构成最后的结果。标准的加法Hash的构造如下:

 static int additiveHash(String key, int prime)
 {
  int hash, i;
  for (hash = key.length(), i = 0; i < key.length(); i++)
   hash += key.charAt(i);
  return (hash % prime);
 }
 这里的prime是任意的质数,看得出,结果的值域为[0,prime-1]。

二 位运算Hash

这类型Hash函数通过利用各种位运算(常见的是移位和异或)来充分的混合输入元素。比如,标准的旋转Hash的构造如下:

 static int rotatingHash(String key, int prime)
 {
   int hash, i;
   for (hash=key.length(), i=0; i
     hash = (hash<<4>>28)^key.charAt(i);
   return (hash % prime);
 }

先移位,然后再进行各种位运算是这种类型Hash函数的主要特点。比如,以上的那段计算hash的代码还可以有如下几种变形:
1.     hash = (hash<<5>>27)^key.charAt(i);
2.     hash += key.charAt(i);
        hash += (hash << 10);
        hash ^= (hash >> 6);
3.     if((i&1) == 0)
        {
         hash ^= (hash<<7>>3);
        }
        else
        {
         hash ^= ~((hash<<11>>5));
        }
4.     hash += (hash<<5>
5.     hash = key.charAt(i) + (hash<<6>>16) – hash;
6.     hash ^= ((hash<<5>>2));

三 乘法Hash

这种类型的Hash函数利用了乘法的不相关性(乘法的这种性质,最有名的莫过于平方取头尾的随机数生成算法,虽然这种算法效果并不好)。比如,

 static int bernstein(String key)
 {
   int hash = 0;
   int i;
   for (i=0; i
   return hash;
 }

jdk5.0里面的String类的hashCode()方法也使用乘法Hash。不过,它使用的乘数是31。推荐的乘数还有:131, 1313, 13131, 131313等等。

使用这种方式的著名Hash函数还有:
 //  32位FNV算法
 int M_SHIFT = 0;
    public int FNVHash(byte[] data)
    {
        int hash = (int)2166136261L;
        for(byte b : data)
            hash = (hash * 16777619) ^ b;
        if (M_SHIFT == 0)
            return hash;
        return (hash ^ (hash >> M_SHIFT)) & M_MASK;
}

以及改进的FNV算法:
    public static int FNVHash1(String data)
    {
        final int p = 16777619;
        int hash = (int)2166136261L;
        for(int i=0;i
            hash = (hash ^ data.charAt(i)) * p;
        hash += hash << 13;
        hash ^= hash >> 7;
        hash += hash << 3;
        hash ^= hash >> 17;
        hash += hash << 5;
        return hash;
}

除了乘以一个固定的数,常见的还有乘以一个不断改变的数,比如:
    static int RSHash(String str)
    {
        int b    = 378551;
        int a    = 63689;
        int hash = 0;

       for(int i = 0; i < str.length(); i++)
       {
          hash = hash * a + str.charAt(i);
          a    = a * b;
       }
       return (hash & 0x7FFFFFFF);
}

虽然Adler32算法的应用没有CRC32广泛,不过,它可能是乘法Hash里面最有名的一个了。关于它的介绍,大家可以去看RFC 1950规范。

四 除法Hash

除法和乘法一样,同样具有表面上看起来的不相关性。不过,因为除法太慢,这种方式几乎找不到真正的应用。需要注意的是,我们在前面看到的hash的 结果除以一个prime的目的只是为了保证结果的范围。如果你不需要它限制一个范围的话,可以使用如下的代码替代”hash%prime”: hash = hash ^ (hash>>10) ^ (hash>>20)。

五 查表Hash

查表Hash最有名的例子莫过于CRC系列算法。虽然CRC系列算法本身并不是查表,但是,查表是它的一种最快的实现方式。下面是CRC32的实现:

static int crctab[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,  0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,  0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,  0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,  0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,  0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,  0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,  0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,  0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,  0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,  0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,  0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,  0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,  0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,  0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,  0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,  0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,  0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,  0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,  0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,  0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,  0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,  0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,  0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,  0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
  0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,  0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,  0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,  0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,  0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,  0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,  0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,  0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,  0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,  0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,  0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,  0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,  0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,  0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,  0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,  0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,  0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,  0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
int crc32(String key, int hash)
{
  int i;
  for (hash=key.length(), i=0; i
    hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k.charAt(i)];
  return hash;
}

查表Hash中有名的例子有:Universal Hashing和Zobrist Hashing。他们的表格都是随机生成的。

六 混合Hash

混合Hash算法利用了以上各种方式。各种常见的Hash算法,比如MD5、Tiger都属于这个范围。它们一般很少在面向查找的Hash函数里面使用。

七 对Hash算法的评价

http://www.burtleburtle.net/bob/hash/doobs.html 这个页面提供了对几种流行Hash算法的评价。我们对Hash函数的建议如下:

1. 字符串的Hash。最简单可以使用基本的乘法Hash,当乘数为33时,对于英文单词有很好的散列效果(小于6个的小写形式可以保证没有冲突)。复杂一点可以使用FNV算法(及其改进形式),它对于比较长的字符串,在速度和效果上都不错。

2. 长数组的Hash。可以使用http://burtleburtle.net/bob/c/lookup3.c这种算法,它一次运算多个字节,速度还算不错。

八 后记

本文简略的介绍了一番实际应用中的用于查找的Hash算法。Hash算法除了应用于这个方面以外,另外一个著名的应用是巨型字符串匹配(这时的 Hash算法叫做:rolling hash,因为它必须可以滚动的计算)。设计一个真正好的Hash算法并不是一件容易的事情。做为应用来说,选择一个适合的算法是最重要的。

02:10  |   永久链接  |   浏览 (185)  |   评论 (1)  |    收藏  |   数据结构及算法  |  
评论    共 1 条 发表评论
onlytiancai     2007-08-31 09:28

不错哦

发表评论

数据结构基础-Hash Table详解

理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping)。 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素。但反过来,集合B中的一个元素...
  • liufei_learning
  • liufei_learning
  • 2014年02月15日 01:47
  • 12887

深入理解数据结构之散列表、散列、散列函数

前言                            笔者以前对散列是什么?哈希又是什么?何谓散列表?散列函数又是个什么东东比较的迷惑。                     通过看一些书...
  • kiritor
  • kiritor
  • 2013年06月12日 12:08
  • 5606

重温数据结构:哈希 哈希函数 哈希表

点击查看 Java 集合框架深入理解 系列, - ( ゜- ゜)つロ 乾杯~ 在学习 HashMap 前,我们先来温习下 Hash(哈希) 的概念。 什么是 HashHash(哈希),又称“散列”...
  • u011240877
  • u011240877
  • 2016年10月27日 00:49
  • 4749

【NOIP数据结构专项】单调队列单调栈

某地有 N 个能量发射站排成一行,每个发射站 i 都有不相同的高度 Hi,并能向两边(当 然两端的只能向一边)同时发射能量值为 Vi 的能量,并且发出的能量只被两边最近的且比 它高的发射站接收。 显...
  • qq_35794492
  • qq_35794492
  • 2016年08月04日 22:16
  • 75

数据结构专项练习(数组、链表、二叉树)

主要记录了一些不太熟的知识点 1、在双向循环链表中,在p指针所指的节点后插入一个指针q所指向的新节点,修改指针的操作是____。 在这一题中,因为插入之前P节点的next也就是X没有名字,...
  • beautiful_face
  • beautiful_face
  • 2017年04月08日 22:22
  • 212

【除留余数法定义hash函数+平方探测法解决hash冲突】数据结构实验之查找五:平方之哈希表

Think: 1知识点:除留余数法定义hash函数+平方探测法解决hash冲突 2反思 & 思考: hash冲突数据: 4 5 1 6 11 16数据结构实验之查找五:平方之哈希表 Tim...
  • BlessingXRY
  • BlessingXRY
  • 2017年12月17日 20:16
  • 135

数据结构 c语言实现哈希(hash)表查找 除留余数法构建hash函数开放定值法线性探测处理冲突

一.hash函数头文件实现hash.h #ifndef __HASH_H__ #define __HASH_H__ #include #include #include #include ...
  • u013488347
  • u013488347
  • 2017年07月31日 04:41
  • 228

数据结构作业Hash表

  • 2014年12月09日 19:35
  • 291KB
  • 下载

杂凑表的设计与实现 数据结构 哈希 hash

  • 2010年06月24日 22:25
  • 1.11MB
  • 下载

数据结构课程设计hash表

  • 2013年12月31日 12:14
  • 2KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章: 数据结构专项之Hash函数
举报原因:
原因补充:

(最多只允许输入30个字)