整数划分2

转载 2012年05月04日 16:12:26

整数划分 --- 一个老生长谈的问题:
  1) 练练组合数学能力.
  2) 练练递归思想
  3) 练练DP
  总之是一道经典的不能再经典的题目:
  这道好题求:
  1. 将n划分成若干正整数之和的划分数。
  2. 将n划分成k个正整数之和的划分数。
  3. 将n划分成最大数不超过k的划分数。
  4. 将n划分成若干奇正整数之和的划分数。
  5. 将n划分成若干不同整数之和的划分数。

 

1.将n划分成不大于m的划分法: 

   1).若是划分多个整数可以存在相同的:

    dp[n][m]= dp[n][m-1]+ dp[n-m][m]  dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
       则划分数可以分为两种情况:
       a.划分中每个数都小于 m,相当于每个数不大于 m- 1, 故划分数为 dp[n][m-1].
       b.划分中有一个数为 m. 那就在 n中减去 m ,剩下的就相当于把 n-m 进行划分, 故划分数为 dp[n-m][m];

  2).若是划分多个不同的整数:

  dp[n][m]= dp[n][m-1]+ dp[n-m][m-1]   dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
      同样划分情况分为两种情况:
      a.划分中每个数都小于m,相当于每个数不大于 m-1,划分数为 dp[n][m-1].
      b.划分中有一个数为 m.在n中减去m,剩下相当对n-m进行划分,

   并且每一个数不大于m-1,故划分数为 dp[n-m][m-1]

  2.将n划分成k个数的划分法:

    dp[n][k]= dp[n-k][k]+ dp[n-1][k-1];

     方法可以分为两类:
       第一类: n 份中不包含 1 的分法,为保证每份都 >= 2,可以先拿出 k 个 1 分
     到每一份,然后再把剩下的 n- k 分成 k 份即可,分法有: dp[n-k][k]
       第二类: n 份中至少有一份为 1 的分法,可以先那出一个 1 作为单独的1份,剩
     下的 n- 1 再分成 k- 1 份即可,分法有:dp[n-1][k-1]

  

  3.将n划分成若干奇数的划分法:(不懂)

    g[i][j]:将i划分为j个偶数

    f[i][j]:将i划分为j个奇数
     g[i][j] = f[i - j][j];
     f[i][j] = f[i - 1][j - 1] + g[i - j][j];

 

  

#include<stdio.h>
#include<string.h>
#define nmax 51
int num[nmax][nmax];        //将i划分为不大于j的个数
int num1[nmax][nmax];      //将i划分为不大于j的不同的数
int num2[nmax][nmax];     //将i划分为j个数
int f[nmax][nmax];       //将i划分为j个奇数
int g[nmax][nmax];      //将i划分为j个偶数
void init()
{
    int i, j;
    for (i = 0; i < nmax; i++)
    {
        num[i][0] = 0;
        num[0][i] = 0;
        num1[i][0] = 0;
        num1[0][i] = 0;
        num2[i][0] =0;
        num2[0][i] = 0;
    }
    for(i=1; i<nmax; i++)
    {
        for(j=1; j<nmax; j++)
        {
            if(i<j)
            {
                num[i][j]=num[i][i];
                num1[i][j]=num1[i][i];
                num2[i][j]=0;
            }
            else if(i==j)
            {
                num[i][j]=num[i][j-1]+1;
                num1[i][j]=num1[i][j-1]+1;
                num2[i][j]=1;
            }
            else
            {
                num[i][j] = num[i][j - 1] + num[i - j][j];
                num1[i][j] = num1[i][j - 1] + num1[i - j][j - 1];
                num2[i][j] = num2[i - 1][j - 1] + num2[i - j][j];
            }
        }
    }
    f[0][0] = 1, g[0][0] = 1;
    for(i = 1; i < nmax; i++)
    {
        for(j = 1; j <= i; j++)
        {
            g[i][j] = f[i - j][j];
            f[i][j] = f[i - 1][j - 1] + g[i - j][j];
        }
    }
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("data.in", "r", stdin);
#endif
    int n, k, i, res0, res1, res2, res3, res4;
    init();
    while (~scanf("%d %d", &n, &k))
    {
        res0 = num[n][n];
        res1 = num2[n][k];
        res2 = num[n][k];
        for (i = 0, res3 = 0; i <= n; i++)
        {
            res3 += f[n][i];
        }
        res4 = num1[n][n];
        printf("%d\n%d\n%d\n%d\n%d\n\n", res0, res1, res2, res3, res4);
    }
    return 0;
}

相关文章推荐

整数划分(2)

整数划分(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 把一个正整数m分成n个正整数的和,有多少种分法? 例:把5分成3个正正数的和,有两种分法:...

动态规划-整数划分问题(2)

整数划分 --- 一个老生长谈的问题:   1) 练练组合数学能力.   2) 练练递归思想   3) 练练DP   总之是一道经典的不能再经典的题目:   这道好题求:   1. 将n划分成若干正整...

《动态规划》 输入两个整数 n 和 m,从数列1,2,3.......n 中 随意取几个数, 使其和等于 m

这是一道中兴的面试题 题目: 输入两个整数 n 和 m,从数列1,2,3.......n 中 随意取几个数, 使其和等于 m ,要求将其中所有的可能组合列出来. ...

DigitSum(n) 输入一个非负整数,返回组成它的数字之和, 调用DigitSum(1729),返回1+7+2+9,和19 和出现的一些问题

/*写一个递归函数DigitSum(n),输入一个非负整数,返回组成它的数字之和, 例如,调用DigitSum(1729),则应该返回1+7+2+9,它的和是19*/ #include #inclu...

正整数10进制2进制转换

  • 2009-04-25 12:52
  • 24KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)