[分块+并查集按秩合并]#519. 「LibreOJ β Round #2」数学上来先打表

原创 2017年10月11日 21:42:39

题目梗概

Angle Beats,番,仲村由理(小百合~)

给你一个图,每个点有点权,最开始没有边。

有一些操作:

  1. 添加一条 x 与 y 之间的双向边。
  2. 回到第 x 次操作后的状态。(注意这里的 x 可以是 0,即回到初始状态)
  3. 查询 x 所在联通块能到的点中点权第 y 小的值,如果不存在,那么输出 −1。

解题思路

对于第2个操作,将询问建成树后DFS。

对于第3个操作,对于每个联通块分块维护前缀和,对于当前块暴力查询一个点是否出现。

在建边时,需要按秩合并两个并查集。

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
inline int _read(){
    int num=0;char ch=getchar();
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') num=num*10+ch-48,ch=getchar();
    return num;
}
const int maxn=100005,S=1200;
int n,m,a[maxn],id[maxn],sum[maxn][maxn/S+3],c[maxn],s[maxn],f[maxn],p[maxn],X[maxn],Y[maxn],ans[maxn],K;
vector<int> d[maxn];
bool cmp(int x,int y){return a[x]<a[y];}
int get(int x){if (f[x]==x) return x;return get(f[x]);}
int query(int x,int y){
    if (y>s[x]) return 0;
    int t=0;while(y>sum[x][t]) y-=sum[x][t++];
    for (int i=0;i<S;i++){
        y-=(get(id[t*S+i])==x);
        if (!y) return id[S*t+i];
    }
}
void DFS(int x){
    if (p[x]==1){
        int fx=get(X[x]),fy=get(Y[x]);
        if (s[fx]>s[fy]) swap(fx,fy);
        if (fx!=fy){
            f[fx]=fy;s[fy]+=s[fx];
            for (int i=0;i<=K;i++) sum[fy][i]+=sum[fx][i];
        }
        for (int i=0;i<d[x].size();i++) DFS(d[x][i]);
        if (fx!=fy){
            f[fx]=fx;s[fy]-=s[fx];
            for (int i=0;i<=K;i++) sum[fy][i]-=sum[fx][i];
        }
    }else{
        if (p[x]==3) ans[x]=query(get(X[x]),Y[x]);
        for (int i=0;i<d[x].size();i++) DFS(d[x][i]);
    }
}
int main(){
    freopen("exam.in","r",stdin);
    freopen("exam.out","w",stdout);
    n=_read();m=_read();a[0]=-1;K=n/S+1;
    for (int i=1;i<=n;i++) a[i]=_read(),id[i]=i;
    sort(id+1,id+1+n,cmp);
    for (int i=1;i<=n;i++) c[i]=a[id[i]],f[i]=i,s[i]=1,sum[id[i]][i/S]=1;
    for (int i=1;i<=m;i++){
        p[i]=_read();X[i]=_read();
        if (p[i]==2) d[X[i]].push_back(i);else{
            Y[i]=_read();
            d[i-1].push_back(i);
        }
    }
    DFS(0);
    for (int i=1;i<=m;i++) if (p[i]==3) printf("%d\n",a[ans[i]]);
    return 0;
}
版权声明:本文为博主原创文章,未经博主同意允许转载。

相关文章推荐

【并查集+平衡树启发式合并】LibreOJ β Round #2[DP一般看规律]题解

LibreOJ β Round #2[DP一般看规律]题解。

BZOJ 4668 冷战 [并查集][按秩合并&启发式合并]

4668: 冷战Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 364  Solved: 182[Submit][Status][Discuss]Des...

NOIP2013 D1T3 货车运输 倍增LCA OR 并查集按秩合并

思路: Kruskal求最大生成树+倍增LCA// by SiriusRen #include #include #include using namespace std; #define N...

杭电 1856 并查集路径压缩+按秩合并

这道题是下午看的,当时看了不会,后来看算法导论上有,有看了一些其他的资料,就做出来了。不过杭电数据坑爹啊,,,竟然有n=0的情况,让我wr了好几次。。。。题目: More is better ...

并查集(两个优化—按秩合并、路径压缩) poj2492

并查集有两个优化。 一、按秩合并 描述:就是在对两个不同子集连接时,按照rank来连,也就是rank低的连在rank高的下面。rank高的做父亲节点。 作用,这样类似维护了一棵树,树是rank高...

数据结构实现之并查集(使用按秩合并和路径压缩)

并查集可解决动态连通性问题 网络,判断网络中的两个结点是否相同,连接两个结点,社交网络中的人与人之间是否存在关系 变量名等价性,编程语言中一个对象可以有多个引用,如何判断两个给定的变量名是否等价(即是...

并查集(按秩合并、路径压缩)

算法分类: 数据结构 算法原理: 通过find函数找出该节点的根节点, 通过UNION函数将两棵树合并。 加入rank[N]来记录每个节点的秩(即树的高度),并按秩进行合并,可避免合...

UVA 11354 - Bond(并查集-按秩合并)

题目链接:点击打开链接 题意:给出一张n个点m条边的无向图, 每条边有一个危险度,有q个询问, 每次给出两个点s、t,找一条路, 使得路径上的最大危险度最小。 思路:首先,我们可以发现,如果求一个...

并查集讲解(按秩合并与路径压缩),模板与典型例题

并查集模板 并查集典型题目 按秩合并,路径压缩讲解

【jzoj4899】【雪之国度】【最小生成树】【并查集按秩合并】

题目大意给出一棵带点权的图,边权为点权之差的绝对值,询问两点之间两条不相交的路径,权值最大的权值是多少。解题思路先搞出最小生成树,再从小到大添加非树边,每添加一条就会形成一个边双连通分量,双连通分量里...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)