感知哈希算法Java实现

原创 2016年03月26日 21:35:19

Google“相似图片搜索”:你可以用一张图片,搜索互联网上所有与它相似的图片。
打开Google图片搜索页面:这里写图片描述
点击照相按钮上传一张angelbaby原图:
这里写图片描述

点击搜索后,Google将会找出与之相似的图片,图片相似度越高就越排在前面。如:
这里写图片描述

这种技术的原理是什么?计算机怎么知道两张图片相似?
根据Neal Krawetz博士的解释,实现相似图片搜索的关键技术叫做“感知哈希算法”,它的作用是对每一张图片生成一个“指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。

以下是一个最简单的java实现:
预处理:读取图片

File inputFile = newFile(filename);   
BufferedImage sourceImage = ImageIO.read(inputFile);//读取图片文件  

第一步:缩小尺寸。
将图片缩小到8*8的尺寸,总共64个像素。这一步的作用是去除图片的细节,只保留结构、明暗等基本信息,摒弃不同尺寸、比例带来的图片差异。

int width= 8;  
intheight = 8;  
// targetW,targetH分别表示目标长和宽  
int type= sourceImage.getType();// 图片类型  
BufferedImagethumbImage = null;  
double sx= (double) width / sourceImage.getWidth();  
double sy= (double) height / sourceImage.getHeight(); 

// 将图片宽度和高度都设置成一样,以长度短的为准  
if (b) {  
      if(sx > sy) {  
            sx= sy;  
            width= (int) (sx * sourceImage.getWidth());  
      }else {  
            sy= sx;  
            height= (int) (sy * sourceImage.getHeight());  
      }  
}  
// 自定义图片  
if (type== BufferedImage.TYPE_CUSTOM) { // handmade  
     ColorModelcm = sourceImage.getColorModel();  
     WritableRasterraster = cm.createCompatibleWritableRaster(width,height);  
     booleanalphaPremultiplied = cm.isAlphaPremultiplied();  
     thumbImage= new BufferedImage(cm, raster, alphaPremultiplied, null);  
 } else {  
     // 已知图片,如jpg,png,gif  
     thumbImage= new BufferedImage(width, height, type);  
}  
// 调用画图类画缩小尺寸后的图  
Graphics2Dg = target.createGraphics();  
//smoother than exlax:  
g.setRenderingHint(RenderingHints.KEY_RENDERING, RenderingHints.VALUE_RENDER_QUALITY);  
g.drawRenderedImage(sourceImage,AffineTransform.getScaleInstance(sx, sy));  
g.dispose();  

第二步:简化色彩。
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。

int[]pixels = new int[width * height];  
for (inti = 0; i < width; i++) {  
      for(int j = 0; j < height; j++) {  
            pixels[i* height + j] = rgbToGray(thumbImage.getRGB(i, j));  
      }  
}  
/**  
 * 灰度值计算  
 * @param pixels 彩色RGB值(Red-Green-Blue 红绿蓝)  
 * @return int 灰度值  
 */  
public static int rgbToGray(int pixels) {  
       // int _alpha =(pixels >> 24) & 0xFF;  
       int _red = (pixels >> 16) & 0xFF;  
       int _green = (pixels >> 8) & 0xFF;  
       int _blue = (pixels) & 0xFF;  
       return (int) (0.3 * _red + 0.59 * _green + 0.11 * _blue);  
}  

第三步:计算平均值。
计算所有64个像素的灰度平均值。

int avgPixel= 0;  
int m = 0;  
for (int i =0; i < pixels.length; ++i) {  
      m +=pixels[i];  
}  
m = m /pixels.length;  
avgPixel = m;  

第四步:比较像素的灰度。
将每个像素的灰度,与平均值进行比较。大于或等于平均值,记为1;小于平均值记为0.

int[] comps= new int[width * height];  
for (inti = 0; i < comps.length; i++) {  
    if(pixels[i] >= avgPixel) {  
        comps[i]= 1;  
    }else {  
        comps[i]= 0;  
    }  
}  

第五步:计算哈希值。
将上一步的比较结果组合在一起,就构成了一个64位的整数,这就是这张图片指纹。组合的次序并不重要,只要保证所有图片都采用同样的次序就行。

StringBufferhashCode = new StringBuffer();  
for (inti = 0; i < comps.length; i+= 4) {  
      intresult = comps[i] * (int) Math.pow(2, 3) + comps[i + 1] * (int) Math.pow(2, 2)+ comps[i + 2] * (int) Math.pow(2, 1) + comps[i + 2];  
      hashCode.append(binaryToHex(result));//二进制转为16进制  
}  
StringsourceHashCode = hashCode.toString();  

得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算“汉明距离”(Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。

int difference = 0;  
int len =sourceHashCode.length();  

for (inti = 0; i < len; i++) {  
   if(sourceHashCode.charAt(i) != hashCode.charAt(i)) {  
       difference++;  
   }  
}  

你可以将几张图片放在一起,也可以计算出他们的汉明距离对比,就可以看看两张图是否相似。

这种算法的优点是简单快速,不受图片大小缩放的影响,缺点是图片的内容不能变更。如果在图片上加几个文字,它就认不出来了。所以,它的最佳用途是根据缩略图,找出原图。

实际应用中,往往采用更强大的pHash算法和SIFT算法,它们能够识别图片的变形。只要变形程度不超过25%,它们就能匹配原图。这些算法虽然更复杂,但是原理与上面的简便算法是一样的,就是先将图片转化成Hash字符串,然后再进行比较。

版权声明:本文为博主原创文章,未经博主允许不得转载。

Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法

Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法  毕业论文提交之后,老师交给自己一项任务:图像配准,也就是给你两幅图像,通过系统来判定两幅图像是否为同一副图像。自己作为这一方面的小白...
  • sunhuaqiang1
  • sunhuaqiang1
  • 2017年04月18日 21:03
  • 40552

Java之——Hash算法大全

实际工作过程中,要用到各种各样的Hash算法,今天就给大家带来一篇基于java实现的各类Hash算法,其他语言本质上是一样的,大家可以拿来做个参考,好了,不多说了,我们直接上代码 package co...
  • l1028386804
  • l1028386804
  • 2017年01月16日 13:17
  • 3464

哈希算法&&Java中的HashMap实现原理

HashMap是通过一个Entry的数组实现的。而Entry的结构有三个属性,key,value,next。如果在c中,我们遇到next想到的必然是指针,其实在java这就是个指针。每次通过hashc...
  • u013755250
  • u013755250
  • 2016年04月05日 19:14
  • 4328

一致哈希算法Java实现

一致哈希算法(Consistent Hashing Algorithms)是一个分布式系统中常用的算法。传统的Hash算法当槽位(Slot)增减时,面临所有数据重新部署的问题,而一致哈希算法确可以保证...
  • kimylrong
  • kimylrong
  • 2014年11月19日 18:12
  • 4198

Java中的HashCode(1)之hash算法基本原理

一、为什么要有Hash算法 Java中的集合有两类,一类是List,一类是Set。List内的元素是有序的,元素可以重复。Set元素无序,但元素不可重复。要想保证元素不重复,两个元素是否重复应该依据...
  • woshixuye
  • woshixuye
  • 2012年11月16日 09:20
  • 28521

Java中哈希值的作用

Java中创建的对象是保存在堆中的;为了提高查找的速度而使用了散列值查找。散列值得查找的基本思想是定义一个键来映射对象所在的内存地址。当需要查找对象时,直接查找即可,不用遍历整个堆来查找对象了,而这个...
  • lianyushengren
  • lianyushengren
  • 2015年03月09日 20:51
  • 2329

Java 感知哈希实现的图片搜索

  • 2014年05月22日 21:51
  • 4.15MB
  • 下载

感知哈希算法原理与实现

今天忽然想做一个图像识别的APP,但是在两张图片相似度的问题上产生了问题,感知哈希算法并不能解决这个问题,只是我在试着解决问题的过程中学到的一点知识。这里的关键技术叫做”感知哈希算法”(Percept...
  • whuhan2013
  • whuhan2013
  • 2016年03月27日 19:11
  • 2473

java中的哈希算法和hashcode深入讲解

java中的哈希算法和hashcode深入讲解 一,哈希算法的概念     在计算机领域,哈希算法具有非常广泛的应用,比如快速查找和加密。今天我们来讨论一下哈希算法。我们先从理论知识开始。...
  • reggergdsg
  • reggergdsg
  • 2016年12月22日 19:49
  • 7397

java实现的sift全部代码

  • 2014年03月27日 15:41
  • 146KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:感知哈希算法Java实现
举报原因:
原因补充:

(最多只允许输入30个字)