应该在什么时候使用Hadoop

本文探讨了Hadoop在不同数据规模下的适用性,指出对于小规模数据,使用Pandas等工具更为高效;对于大规模数据,则需考虑使用Hadoop。文章对比了Hadoop与SQL、Python脚本在计算表达力方面的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

应该在什么时候使用Hadoop

作者:chszs,转载需注明。博客主页:http://blog.csdn.net/chszs

有人问我,“你在大数据和Hadoop方面有多少经验?”我告诉他们,我一直在使用Hadoop,但是我处理的数据集很少有大于几个TB的。

他们又问我,“你能使用Hadoop做简单的分组和统计吗?”我说当然可以,我只是告诉他们我需要看一些文件格式的例子。

他们递给我一个包含600MB数据的闪盘,看起来这些数据并非样本数据,由于一些我不能理解的原因,当我的解决方案涉及到pandas.read_csv文件,而不是Hadoop,他们很不愉快。

Hadoop实际上是有很多局限的。Hadoop允许你运行一个通用的计算,下面我用伪码进行说明:

Scala风格的伪码:
collection.flatMap( (k,v) => F(k,v) ).groupBy( _._1 ).map( _.reduce( (k,v) => G(k,v) ) )

SQL风格的伪码:
SELECT G(...) FROM table GROUP BY F(...)

目标:计算图书馆书籍的数量
Map:你统计奇数书架上书的数量,我统计偶数书架上书的数量。(人越多,统计越快)
Reduce:把我们单独统计后的数据加在一起。

我们所做的只有两个:F(k,v)和G(k,v),除开在中间步骤中的性能优化,一切都是固定的。

它会迫使你在Map中进行所有的计算,分组和统计,执行运算的方式像是穿上了紧身衣,其实很多计算更适合选用其它模型。穿上紧身衣的唯一原因是这可能会扩展到非常大的数据集上,而大多数情况下,你的数据量可能会小几个数量级。

但是由于“大数据”和“Hadoop”这两个热门词,即使很多人实际上不需要Hadoop,他们也愿意穿上“紧身衣”。

一、如果我的数据量是几百兆,Excel可能没法加载它

对于Excel软件来说的“很大的数据”并非大数据,其实还有其它极好的工具可以使用——我喜欢的Pandas。Pandas构建于Numpy库之上,可以以矢量格式的方式有效地把数百兆的数据载入到内存中。在我购买已3年的笔记本上,它可以用Numpy在一眨眼的功夫把1亿的浮点数乘在一起。Matlab和R也是极好的工具。
对于几百兆的数据量,典型的做法是写一个简单的Python脚本按行读取文件行,并处理它,向另一个文件写入。

二、如果我的数据是10GB呢

我买了个新笔记本,它有16GB的内存和256GB的SSD。如果你要载入一个10GB的CSV文件到Pandas,它占用的内存实际上是很小的——其结果是以数字类型的字符串保存的,如“17284832583”作为4字节货8字节的整数,或存储“284572452.2435723”字符串作为8字节的双精度浮点数。
最坏的情况是你或许不能把所有的数据都同时载入到内存中。

三、如果我的数据是100GB、500GB或1TB呢

买个2TB或4TB的硬盘,在桌面PC或服务器上安装一个Postgre来解决它。

四、Hadoop远远比不上SQL或Python脚本

在计算的表达方面,Hadoop弱于SQL,也弱于Python脚本。
SQL是一个很直接的查询语言,适合做业务分析,SQL的查询相当简单,而且还非常快——如果你的数据库使用了正确的索引,二级查询或多级查询另当别论。
Hadoop没有索引的概念,Hadoop只有全表扫描,Hadoop有高度泄露抽象——我花了很多时间来处理Java的内存错误、文件碎片以及集群竞争,这些时间远大于我花在数据分析上的时间。
如果你的数据并不是像SQL表那样的结构化数据(比如纯文本、JSON对象、二进制对象),通常是直接写一个小的Python脚本来按行处理你的数据。把数据存储于文件,处理每一个文件,等等。如果换成是Hadoop就很麻烦。
相比于SQL或Python脚本,Hadoop要慢的多。正确的使用索引后,SQL查询总是非快——PostgreSQL简单的查找索引,检索确切的键值。而Hadoop是全表扫描的,它会把整个表进行重新排序。通过把数据表分片到多台计算机上后,重排序是很快的。另一方面,处理二进制对象,Hadoop需要重复往返于命名节点,目的是查找和处理数据。这适合用Python脚本来实现。

五、我的数据超过了5TB

你应该考虑使用Hadoop,而无需做过多的选择。
使用Hadoop唯一的好处是可伸缩性非常好。如果你有一个包含了数TB数据的表,Hadoop有一个适合全表扫描的选项。如果你没有这样大数据量的表,那么你应该像躲避瘟疫那样避免使用Hadoop。这样使用传统的方法来解决问题会更轻松。

六、Hadoop是一个极好的工具

我并不讨厌Hadoop,当我用其它工具不能很好处理数据时我会选择Hadoop。另外,我推荐使用Scalding,不要使用Hive或Pig。Scalding支持使用Scala语言来编写Hadoop任务链,隐藏了其下的MapReduce。
### Hadoop大数据工程师学习路径中的合适学习时机 Hadoop大数据技术领域的重要组成部分,其学习时机应当根据大数据工程师的知识体系进行合理安排。以下是关于 Hadoop 学习时机的详细分析: #### 1. 计算机基础与编程语言之后 在掌握计算机基础知识(如操作系统、网络、数据结构与算法)以及至少一种编程语言(如 Java 或 Python)之后,可以开始学习 Hadoop[^1]。这是因为 Hadoop 的开发和使用依赖于对分布式系统原理的理解以及对 Java API 的熟练掌握。 #### 2. 数据存储与采集之前或同时 Hadoop 提供了 HDFS(Hadoop Distributed File System),这是一种分布式文件系统,用于存储海量数据。因此,在学习数据存储与采集工具(如 Kafka、Flume)之前或同时学习 Hadoop,能够帮助理解分布式存储的基本概念及其在大数据生态系统中的作用[^3]。 #### 3. 分布式计算框架的基础阶段 在分布式计算框架的学习中,Hadoop 是一个重要的起点。MapReduce 是 Hadoop 核心组件之一,提供了批处理大数据的能力。通过学习 MapReduce,可以为后续学习更高级的分布式计算框架(如 Spark 和 Flink)打下坚实的基础[^4]。 ```python # 示例代码:使用 Hadoop MapReduce 编写简单的 WordCount 程序 from hadoop import Mapper, Reducer class WordCountMapper(Mapper): def map(self, key, value): words = value.split() for word in words: yield word, 1 class WordCountReducer(Reducer): def reduce(self, key, values): yield key, sum(values) if __name__ == "__main__": mapper = WordCountMapper() reducer = WordCountReducer() mapper.run() reducer.run() ``` #### 4. 数据仓库与治理体系的前置条件 HadoopHive 和 HBase 等数据仓库工具紧密结合。在学习数据仓库与治理体系之前,了解 Hadoop 的工作原理(如 NameNode 和 DataNode 的角色、SecondaryNameNode 的功能[^5])有助于更好地理解这些工具如何管理大规模数据集。 #### 5. 性能调优与实践项目阶段 在完成理论学习后,可以通过实际项目练习 Hadoop 的性能调优技巧。例如,优化 HDFS 的块大小、调整 MapReduce 的并行度等,这些都是成为一名优秀大数据工程师所必需的技能。 ### 注意事项 尽管 Hadoop大数据领域的经典技术,但随着 Spark 和 Flink 等新一代框架的崛起,Hadoop使用场景有所减少。然而,Hadoop 仍然是理解分布式计算和存储的基础,因此不可忽视其重要性。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值