流——概念

转载 2016年08月28日 21:08:01

转自http://blog.csdn.net/u010425776/article/details/52344425

1. 流的基本概念

1.1 什么是流?

流是Java8引入的全新概念,它用来处理集合中的数据,暂且可以把它理解为一种高级集合。

众所周知,集合操作非常麻烦,若要对集合进行筛选、投影,需要写大量的代码,而流是以声明的形式操作集合,它就像SQL语句,我们只需告诉流需要对集合进行什么操作,它就会自动进行操作,并将执行结果交给你,无需我们自己手写代码。

因此,流的集合操作对我们来说是透明的,我们只需向流下达命令,它就会自动把我们想要的结果给我们。由于操作过程完全由Java处理,因此它可以根据当前硬件环境选择最优的方法处理,我们也无需编写复杂又容易出错的多线程代码了。

1.2 流的特点

  1. 只能遍历一次 
    我们可以把流想象成一条流水线,流水线的源头是我们的数据源(一个集合),数据源中的元素依次被输送到流水线上,我们可以在流水线上对元素进行各种操作。一旦元素走到了流水线的另一头,那么这些元素就被“消费掉了”,我们无法再对这个流进行操作。当然,我们可以从数据源那里再获得一个新的流重新遍历一遍。

  2. 采用内部迭代方式 
    若要对集合进行处理,则需我们手写处理代码,这就叫做外部迭代。而要对流进行处理,我们只需告诉流我们需要什么结果,处理过程由流自行完成,这就称为内部迭代。

1.3 流的操作种类

流的操作分为两种,分别为中间操作 和 终端操作。

  1. 中间操作 
    当数据源中的数据上了流水线后,这个过程对数据进行的所有操作都称为“中间操作”。 
    中间操作仍然会返回一个流对象,因此多个中间操作可以串连起来形成一个流水线。

  2. 终端操作 
    当所有的中间操作完成后,若要将数据从流水线上拿下来,则需要执行终端操作。 
    终端操作将返回一个执行结果,这就是你想要的数据。

1.4 流的操作过程

使用流一共需要三步:

  1. 准备一个数据源
  2. 执行中间操作 
    中间操作可以有多个,它们可以串连起来形成流水线。
  3. 执行终端操作 
    执行终端操作后本次流结束,你将获得一个执行结果。

2. 流的使用

2.1 获取流

在使用流之前,首先需要拥有一个数据源,并通过StreamAPI提供的一些方法获取该数据源的流对象。数据源可以有多种形式:

  1. 集合 
    这种数据源较为常用,通过stream()方法即可获取流对象:
List<Person> list = new ArrayList<Person>(); 
Stream<Person> stream = list.stream();

  1. 数组 
    通过Arrays类提供的静态函数stream()获取数组的流对象:
String[] names = {"chaimm","peter","john"};
Stream<String> stream = Arrays.stream(names);

  1. 值 
    直接将几个值变成流对象:
  2. Stream<String> stream = Stream.of("chaimm","peter","john");



举报

相关文章推荐

工作流学习——重要概念扫盲篇一步曲

本篇博文来源 http://blog.csdn.net/zwk626542417/article/details/46592471 前言       从本篇文章我们开始介绍工作流框架a...

JBPM——工作流概念

一、概念        工作流(Workflow),就是“业务过程的部分或整体在计算机应用环境下的自动化”,它主要解决的是“使在多个参与者之间按照某种预定义的规则自动进行传递文档、信息或任务的过程,...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

工作流学习——重要概念扫盲篇一步曲

参考:http://blog.csdn.net/zwk626542417/article/details/46592471 注:学习博客的记录学习方法。 前言       从本篇文章我...

工作流学习——重要概念扫盲篇一步曲

http://blog.csdn.net/zwk626542417/article/details/46592471 ****************************************...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)