IEEE754浮点数的表示方法

1.浮点数的存储格式

浮点数在C/C++中对应float和double类型,我们有必要知道浮点数在计算机中实际存储的内容。

IEEE754标准中规定float单精度浮点数在机器中表示用 1 位表示数字的符号,用 8 位来表示指数,用23 位来表示尾数,即小数部分。对于double双精度浮点数,用 1 位表示符号,用 11 位表示指数,52 位表示尾数,其中指数域称为阶码。IEEE 浮点值的格式如下图所示。

这里写图片描述

注意,IEE754规定浮点数阶码E采用”指数e的移码-1”来表示,请记住这一点。为什么指数移码要减去1,这是IEEE754对阶码的特殊要求,以满足特殊情况,比如对正无穷的表示。

2.浮点数的规格化

若不对浮点数的表示作出明确的规定,同一个浮点数的表示就不是唯一的。例如 (1.75)10 可以表示成 1.11×20 0.111×21 0.0111×22 等多种形式。当尾数不为0时,尾数域的最高有效位为1,这称为浮点数的规格化。否则,以修改阶码同时左右移动小数点位置的办法,使其成为规格化数的形式。

2.1单精度浮点数真值

IEEE754标准中,一个规格化32位的浮点数x的真值表示为:

x=(1)S×(1.M)×2e

e=E127

其中尾数域表示的值是1.M。因为规格化的浮点数的尾数域最左位总是1,故这一位不予存储,而认为隐藏在小数点的左边。

在计算指数e时,对阶码E的计算采用源码的计算方式,因此32位浮点数的8bits的阶码E的取值范围是0到255。其中当E为全0或者全1时,是IEEE754规定的特殊情况,下文会另外说明。

2.2双精度浮点数真值

64位的浮点数中符号为1位,阶码域为11位,尾数域为52位,指数偏移值是1023。因此规格化的64位浮点数x的真值是:

x=(1)S×(1.M)×2e

e=E1023

3.移码

移码(又叫增码)是对真值补码的符号位取反,一般用作浮点数的阶码,引入的目的是便于浮点数运算时的对阶操作。

对于定点整数,计算机一般采用补码的来存储。正整数的符号位为0,反码和补码等同于源码。

负整数符号位都固定为1,源码,反码和补码的表示都不相同,由原码表示法变成反码和补码有如下规则:
(1)源码符号位为1不变,整数的每一位二进制数位求反得反码;
(2)反码符号位为1不变,反码数值位最低位加1得补码。

比如,以一个字节8bits来表示-3,那么 [3]=10000011 [3]=11111100 [3]=11111101 ,那么-3的移码就是 [3]=01111101

如何将移码转换为真值-3呢?先将移码转换为补码,再求值。

4.浮点数的具体表示

4.1十进制到机器码

(1)0.5
0.5=(0.1)2 ,符号位S为0,指数为 e=1 ,规格化后尾数为1.0。

单精度浮点数尾数域共23位,右侧以0补全,尾数域:

M=[000 0000 0000 0000 0000 0000]2

阶码E:

E=[1]1=[0111 1111]21=[0111 1110]2

对照单精度浮点数的存储格式,将符号位S,阶码E和尾数域M存放到指定位置,得0.5的机器码:

0.5=[0011 1111 0000 0000 0000 0000 0000 0000]2

十六进制表示为0.5=0x3f000000。

(2)1.5
1.5=[1.1]2 ,符号位为0,指数 e=0 ,规格化后尾数为1.1。

尾数域M右侧以0补全,得尾数域:

M=[100 0000 0000 0000 0000 0000]2

阶码E:

E=[]1=[10000000]21=[01111111]2

得1.5的机器码:

1.5=[0011 1111 1100 0000 0000 0000 0000 0000]2

十六进制表示为1.5=0x3fc00000。

(3)-12.5
12.5=[1100.1]2 ,符号位S为1,指数e为3,规格化后尾数为1.1001,

尾数域M右侧以0补全,得尾数域:

M=[100 1000 0000 0000 0000 0000]2

阶码E:

E=[3]1=[1000 0011]21=[1000 0010]2

即-12.5的机器码:

12.5=[1100 0001 0100 1000 0000 0000 0000 0000]2

十六进制表示为-12.5=0xc1480000。

用如下程序验证上面的推算,代码编译运行平台Win32+VC++ 2012:

#include <iostream>
using namespace std;

int main(){
    float a=0.5;
    float b=1.5;
    float c=-12.5;

    unsigned int* pa=NULL;
    pa=(unsigned int*)&a;
    unsigned int* pb=NULL;
    pb=(unsigned int*)&b;
    unsigned int* pc=NULL;
    pc=(unsigned int*)&c;

    cout<<hex<<"a=0x"<<*pa<<endl;
    cout<<hex<<"b=0x"<<*pb<<endl;
    cout<<hex<<"c=0x"<<*pc<<endl;

    return 0;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

输出结果:
这里写图片描述

验证正确。

4.2机器码到十进制

(1)若浮点数x的IEEE754标准存储格式为0x41360000,那么其浮点数的十进制数值的推演过程如下:

0x41360000=[0 10000010 011 0110 0000 0000 0000 0000]

根据该浮点数的机器码得到符号位S=0,指数e=阶码-127=1000 0010-127=130-127=3。

注意,根据阶码求指数时,可以像上面直接通过 “阶码-127”求得指数e,也可以将 +1= ,再通过移码求其真值便是指数e。比如上面阶码 10000010+1=10000011[]=>00000011[]=3e

包括尾数域最左边的隐藏位1,那么尾数1.M=1.011 0110 0000 0000 0000 0000=1.011011。

于是有:

x=(1)S×1.M×2e=+(1.011011)×23=+1011.011=(11.375)10

通过代码同样可以验证上面的推算:

#include <iostream>
using namespace std;

int main(){
    unsigned int hex=0x41360000;
    float* fp=(float*)&hex;
    cout<<"x="<<*fp<<endl;
    return 0;
}
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

输出结果:
这里写图片描述
验证正确。

5.浮点数的几种特殊情况

(1)0的表示
对于阶码为0或255的情况,IEEE754标准有特别的规定:
如果 阶码E=0并且尾数M是0,则这个数的真值为±0(正负号和数符位有关)。

因此+0的机器码为:0 00000000 000 0000 0000 0000 0000。
-0的机器码为:1 00000000 000 0000 0000 0000 0000。

需要注意一点,浮点数不能精确表示0,而是以很小的数来近似表示0。因为浮点数的真值等于(以32bits单精度浮点数为例):

x=(1)S×(1.M)×2e

e=E127

那么+0的机器码对应的真值为 1.0×2127 。同理,-0机器码真值为 1.0×2127

(2) + 的表示
如果阶码E=255 并且尾数M全是0,则这个数的真值为±∞(同样和符号位有关)。因此+∞的机器码为:0 11111111 000 0000 0000 0000 0000。-∞的机器吗为:1 11111111 000 0000 0000 0000 0000。

(3)NaN(Not a Number)
如果 E = 255 并且 M 不是0,则这不是一个数(NaN)。

6.浮点数的精度和数值范围

6.1浮点数的数值范围

根据上面的探讨,浮点数可以表示-∞到+∞,这只是一种特殊情况,显然不是我们想要的数值范围。

以32位单精度浮点数为例,阶码E由8位表示,取值范围为0-255,去除0和255这两种特殊情况,那么指数e的取值范围就是1-127=-126到254-127=127。

(1)最大正数
因此单精度浮点数最大正数值的符号位S=0,阶码E=254,指数e=254-127=127,尾数M=111 1111 1111 1111 1111 1111,其机器码为:0 11111110 111 1111 1111 1111 1111 1111。

那么最大正数值:

PosMax=(1)S×1.M×2e=+(1.11111111111111111111111)×21273.402823e+38

这是一个很大的数。

(2)最小正数
最小正数符号位S=0,阶码E=1,指数e=1-127=-126,尾数M=0,其机器码为0 00000001 000 0000 0000 0000 0000 0000。

那么最小正数为:

PosMin=(1)S×1.M×2e=+(1.0)×21261.175494e38

这是一个相当小的数。几乎可以近似等于0。当阶码E=0,指数为-127时,IEEE754就是这么规定 1.0×2127 近似为0的,事实上,它并不等于0。

(3)最大负数
最大负数符号位S=1,阶码E=1,指数e=1-127==-126,尾数M=0,机器码与最小正数的符号位相反,其他均相同,为:1 00000001 000 0000 0000 0000 0000 0000。

最大负数等于:

NegMax=(1)S×1.M×2e=(1.0)×21261.175494e38

(4)最小负数
符号位S=0,阶码E=254,指数e=254-127=127,尾数M=111 1111 1111 1111 1111 1111,其机器码为:1 11111110 111 1111 1111 1111 1111 1111。

计算得:

NegMin=(1)S×1.M×2e=+(1.11111111111111111111111)×2127=3.402823e+38

6.2浮点数的精度

说道浮点数的精度,先给精度下一个定义。浮点数的精度是指浮点数的小数位所能表达的位数。

阶码的二进制位数决定浮点数的表示范围,尾数的二进制位数表示浮点数的精度。以32位浮点数为例,尾数域有23位。那么浮点数以二进制表示的话精度是23位,23位所能表示的最大数是 2231=8388607 ,所以十进制的尾数部分最大数值是8388607,也就是说尾数数值超过这个值,float将无法精确表示,所以float最多能表示小数点后7位,但绝对能保证的为6位,也即float的十进制的精度为为6~7位。

64位双精度浮点数的尾数域52位,因 2521=4,503,599,627,370,495 ,所以双精度浮点数的十进制的精度最高为16位,绝对保证的为15位,所以double的十进制的精度为15~16位。。

7.小结

本文操之过急,但也花了将近一天的时间,难免出现编辑错误和不当说法,请网友批评指正。不明之处,欢迎留言交流。对浮点数的乘法、除法运算还未涉及,后续可能会去学习并记录学习所得,与大家分享。


参考文献

[1]移码.百度百科
[2]关于IEEE754标准浮点数阶码的移码.百度知道
[3]计算机组成原理第四版[M].白中英.科学出版社:P16-P30


  • 10
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值