时间序列之指数平滑法(Exponential Smoothing)

原创 2014年11月13日 16:09:47

        统计中,预测方法除了利用多个影响因素建立回归模型来做预测外,在影响因素复杂,或者是没办法得到相关影响因素的数据信息时,回归模型就无能为力了。如果数据是时间序列上的值,在时间上可能呈现一定的稳态或者规律,利用过去时间区间的值来预测未来值,指数平滑法是其中的一个方法。

 

       α平滑常数的确定

       指数平滑法中最重要的一个参数是平滑常数α,α的取值范围是[0-1],α值是主观选定的,值越大表示对未来的预测中越近期的数据权重越大。在市场预测中,α的确定方法,一般是先根据经验做一个大概的预估,基本判断标准如下:

        1.时间序列比较平稳时,选择较小的α值,0.05-0.20

        2.时间序列有波动,但长期趋势没大的变化,可选稍大的α值,0.10-0.40

        3.时间序列波动很大,长期趋势变化大有明显的上升或下降趋势时,宜选较大的α值,0.60-0.80

        4.当时间序列是上升或下降序列,满足加性模型,α取较大值,0.60-1

       再重复试算过程,比较不同α值下,预测的标准误差,从而选取误差较小的α值来建立模型。

 

      指数平滑基本公式

   

     

 

       一次指数平滑

      公式:

   

       一次指数平滑的公式跟指数平滑基本公式类似,但t+1期的预测值是t期观测值和t期预测值的加权平均值,由于观测值的获取,所以从公式来看,一次指数平滑只能预测下一期的值。  

     与移动平均类似,一次指数平滑法得到的平滑值与观测值相比,存在滞后性。

       

       二次指数平滑

       一次指数平滑直接利用平滑值作为预测值,二次指数平滑法则是利用平滑值对趋势进行修正后得到的线性平滑模型。   

       公式:     


        

     式(5)即用来做预测的线性平滑模型,MSE为均方误差,MAPE为平均绝对百分误差,这两个值用来测试预测精度。

          初始平滑值需要估计,这种估计是在所有的指数平滑法中都要进行的。但这一估计数据仅对初始阶段的相关计算有一定影响,随着预测期数的增加,其影响愈来愈小,直至彻底消除。一般情况下,取时间序列第一期的观察值,或者前几期观察值的算术平均值。    

 

       三次指数平滑

       三次指数平滑法,与二次指数平滑法一样,对时间序列的非线性趋势进行修正。是在前两次指数平滑的基础上,使用两次平滑值再进行一次平滑,得到其关于时间的非线性发展趋势模型。

       公式:

       

       式中对应参数含义与二次指数平滑中相同,三次指数平滑法也需要估计初始平滑值,一般也选择时间序列第一期的观察值,或者为前几期观察值的算术平均值。 

       应用时间序列平滑法的前提条件是:(1)所预测的客观事物发展属于渐进式,无跳跃性的变化;(2)过去和目前影响客观事物发展的因素也决定着客观事物未来的发展。由于客观事物的发展变动受多种因素的影响,而各种影响因素又可能是不断发展或不断变动的,因此,时间序列平滑法在一般情况下仅适用于短期的与近期的预测。当预测如果需要延伸至较远未来,时间序列平滑法则存在较大的局限性。时间序列平滑法在客观影响因素发生较大变化可能产生较大的预测误差。为降低这些可能的预测误差,必须充分研究客观影响因素可能的发展与变动,将定性分析和定量研究结合起来,这样才能提高预测的精度。 

 

       除此之外平滑法用的比较多的还有霍特双参数指数平滑法 温特线性和季节性指数平滑法等,推荐一篇讲时间序列的论文,我这篇文章中的内容很多参照的就是这个来源http://www.zgpg.net/Item/15574.aspx还加上了例子说明,好文!

    公式什么的格式不正常啊,CSDN的编辑器不支持公式格式,只好转成图片,图片还要另外上传,吐血中……

预测算法——指数平滑法

指数平滑法是生产预测中常用的一种方法。也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。指数平滑法是移动平均法中的一种,其特点在于给过去的观测值不一样的权重,即较近期观测值的权数...
  • NIeson2012
  • NIeson2012
  • 2016年07月21日 12:59
  • 30832

python构建指数平滑预测模型

指数平滑法其实我想说自己百度的… 只有懂的人才会找到这篇文章… 不懂的人…看了我的文章…还是不懂哈哈哈指数平滑法相比于移动平均法,它是一种特殊的加权平均方法。简单移动平均法用的是算术平均数,近期数...
  • AlanConstantineLau
  • AlanConstantineLau
  • 2017年04月14日 16:31
  • 3599

时间序列分析--指数平滑法

一. 基础知识:1. 概念:时间序列是指一个数据序列,特别是之由一段时间内采集的信号组成的序列,序列前面的信号表示采集的时间较早。 2. 前提假设:时间序列分析一般假设我们获得的数据在时域上具有一...
  • u013527419
  • u013527419
  • 2016年10月15日 14:02
  • 2647

移动平均和指数平滑

(1)简单移动平均 移动平均在TTR包中  简单移动平均 SMA(x, n = 10, ...) 指数移动平均 EMA(x, n = 10, wilder = FALSE, ratio = NUL...
  • littlely_ll
  • littlely_ll
  • 2017年02月04日 21:26
  • 582

时间序列 R 08 指数平滑 Exponential smoothing

1.1 简单指数平滑 “simple exponential smoothing” (SES) SES适用于不计趋势与季节性的时间序列 我们在可以使用平均值模型和naive模型来做粗略的预测(点...
  • bea_tree
  • bea_tree
  • 2016年05月02日 15:33
  • 6313

指数平滑法(Exponential Smoothing,ES)预测

1、什么是指数平滑法    指数平滑法是生产预测中常用的一种方法。也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利...
  • weixin_40396948
  • weixin_40396948
  • 2018年01月19日 16:47
  • 63

Python数据分析_Pandas06_窗函数

窗函数(window function)经常用在频域信号分析中。我其实不咋个懂,大概是从无限长的信号中截一段出来,然后把这一段做延拓变成一个虚拟的无限长的信号。用来截取的函数就叫窗函数,窗函数又分很多...
  • You_are_my_dream
  • You_are_my_dream
  • 2017年04月19日 17:44
  • 1505

时间序列分析之一次指数平滑法

指数平滑法最早是由C.C Holt于1958年提出的,后来经统计学家深入研究使得指数平滑法非常丰富,应用也相当广泛,一般有简单指数平滑法、Holt双参数线性指数平滑法、Winter线性和季节性指数平滑...
  • gulianchao
  • gulianchao
  • 2012年10月14日 22:24
  • 33443

指数平滑法

指数平滑法中a值的确定
  • wtt561111
  • wtt561111
  • 2016年05月21日 20:22
  • 1050

python——大智慧--三重指数平滑--TRIX

""" Created on Tue May 23 08:57:02 2017 @author: yunjinqi E-mail:yunjinqi@qq.com Differentiat...
  • qq_26948675
  • qq_26948675
  • 2017年05月24日 15:00
  • 578
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:时间序列之指数平滑法(Exponential Smoothing)
举报原因:
原因补充:

(最多只允许输入30个字)