关闭

抛物样条曲线的原理说明及画抛物曲线的一个类

标签: attributesinicclass工作
10043人阅读 评论(21) 收藏 举报
分类:

                                                                                            朱金灿              

    假如我们采用矢量表达式来表示参数化的二次曲线,那么可以把抛物线的表达式写成如下的一般形式:

    P(t)=A1+ A2t+ A3t2      (0=<t<=1)

 

   该抛物线过P1, P2, P3三个点,并且:

1.       抛物线以P1点为始点。当参变量t=0时,曲线过P1点;

2.       抛物线以P3点为终点。当参变量t=0时,曲线过P3点;

3.       当参变量t=0.5时,曲线过P2,且切矢量等于P3P1

 

t=0: P(0)= A1= P1

t=1: P(1)= A1 + A2+ A3=P3

t=0.5:P(0.5)= A1 + 0.5A2+0.25 A3=P2

通过解联立方程,得到三个参数A1 A2 A3分别为:

A1 = P1

A2=4 P2P33P1

A3=2P1+2P34P2

 

把求出的这三个系数的值,代入抛物线的表达式P(t)=A1+ A2t+ A3t2

得:P(t)=2t3t+1P1 +(4t4t2)P2+(4t2t)P3   (0=<t<=1)

 

    设有一离散型值点列Pii=1,2,……,n,每经过相邻三点作一段抛物线,由于有n个型值点,所以可以做n-2条抛物线段。

    在这n2条抛物线段中,第i条抛物线段为经过Pi, Pi+1, Pi+2三点,所以它的表达式应为:Si(ti)=2t2i3ti+1Pi +(4 ti4 t2i) Pi+1 +(2t2iti) Pi+2     (0=< ti <=1)

 

    同理,第i+1条抛物线段为经过Pi+1, Pi+2, Pi+3三点,所以它的表达式应为:Si+1(ti+1)=2t2i+13ti+1+1Pi+1 +(4 ti+14 t2i+1) Pi+2 +(2t2i+1ti+1) Pi+3     (0=< ti+1 <=1)

    一般来说,每两段曲线之间的搭接区间,两条抛物线是不可能重合的。如下图所示:

 显然,对于拟合曲线来说,整个型值点必须只能用一条光滑的曲线连接起来。为了做到这一点,必须找一种方法把SiSi+1 这样的曲线段的共同区间结合起来。这种方法就是加权合成方法。

    我们设共同区间的函数是Pi+1(t)=f (T ) Si(ti)+g ( T) Si+1(ti+1). 其中f (T ) g ( T) 是权函数。在抛物样条曲线中我们取简单的一次函数为权函数,且具有互补性,设

f (T ) =1T

g ( T) =T

这样Pi+1(t)= (1T ) Si(ti)+ T Si+1(ti+1).因为 函数中有Ttiti+1三个参数,因此接下来我们的工作是统一参数。我们可以三个参变量统一形式为:

T=2t

ti=0.5+t

ti+1=t

 

这样Pi+1(t)= (—2t3+4t2tPi +(12t3410t2+1) Pi+1 +(12t3+8t2+t) Pi+2 +(4t32t2) Pi+3     (0=< ti <=0.5)

 

    从几何意义上说,函数Pi+1(t)表示的上图的点Pi+1,Pi+2 之间的线段。但是我们应该看到这种方法从n个点中只能得到n3段曲线。但是n个型值点应有n1段曲线。一个直接的想法是添加两个辅助点。那么如何添加呢?

方法一:两个辅助点为P0Pn+1,  P0=P1Pn+1= Pn ,这样画出的曲线为一条不闭合的自由曲线。

方法二:添加三个辅助点,P0Pn+1Pn+2,然后P0=PnPn+1= P1, Pn+2= P2,这样画出的曲线为一条闭合的曲线。

   

下面介绍根据上面原理而设计的一个画抛物曲线的一个类:

class CParspl : public CObject 

{

DECLARE_SERIAL(CParspl)

public:

    CParspl(int nLineStyle,int nLineWidth, COLORREF crLineColor);

       virtual ~CParspl();

       void SetPoint(const CPoint &point);   // 添加坐标点

       void DrawFreeLine(CDC *pDC);//  画自由端抛物曲线

       void DrawCloseLine(CDC *pDC); // 画封闭端抛物曲线

    void Serialize(CArchive & ar);

protected:

       CParspl();

/*public attributes*/

public:

       int m_bIsFreeLine;

/*private attibutes*/

private:

    CArray<CPoint,CPoint> ParsplPoint;  // 定义插值点数组

    COLORREF m_crLineColor;  // 定义线色

       int  m_nLineStyle;      // 定义线型

       int  m_nLineWidth;      //定义线宽

};

 

const int  Clip=10;

 

CParspl::CParspl()  // 默认的构造函数

{

 

}

 

CParspl::~CParspl()

{

      

}

 

CParspl::CParspl(int nLineStyle,int nLineWidth, COLORREF crLineColor)

{

    m_nLineStyle = nLineStyle;

       m_nLineWidth = nLineWidth;

       m_crLineColor = crLineColor;

       ParsplPoint.Add(CPoint(0,0));   //初始化第一个点

       m_bIsFreeLine = 1;

}

 

void CParspl::SetPoint(const CPoint &point)

{

       ParsplPoint.Add(point);

}

 

void CParspl::DrawFreeLine(CDC *pDC)

{

       if(ParsplPoint.GetSize() < 4) return;

       CPen LinePen(m_nLineStyle,m_nLineWidth,m_crLineColor);

    int i=0,j=0;

       int n=0;

    n=ParsplPoint.GetSize();

    double t1,t2,t3,t,a,b,c,d,x,y;

       ParsplPoint[0].x=ParsplPoint[1].x;

       ParsplPoint[0].y=ParsplPoint[1].y;

       CPoint pt=ParsplPoint.GetAt(n-1);

       ParsplPoint.Add(pt);

    t=0.5f/Clip;

    CPen *pLinePen=pDC->SelectObject(&LinePen);

       pDC->MoveTo(ParsplPoint[1].x,ParsplPoint[1].y);

       for (i=0;i<n-2;i++)

       {

              for(j=1;j<Clip;j++)

              {

                     t1=j*t;

                     t2=t1*t1;

                     t3=t2*t1;

                     a=4.0*t2-t1-4.0*t3;

                     b=1.0-10.0*t2+12.0*t3;

                     c=t1+8.0*t2-12.0*t3;

                     d=4.0*t3-2.0*t2;

                     x=a*ParsplPoint[i].x+b*ParsplPoint[i+1].x+c*ParsplPoint[i+2].x+d*ParsplPoint[i+3].x;

                     y=a*ParsplPoint[i].y+b*ParsplPoint[i+1].y+c*ParsplPoint[i+2].y+d*ParsplPoint[i+3].y;

                     pDC->LineTo(int(x),int(y));

              }

              pDC->LineTo(ParsplPoint[i+2].x,ParsplPoint[i+2].y);

       }

       for(i=0;i<n;i++)

       {

              pt=ParsplPoint.GetAt(i);

              pDC->Ellipse(pt.x-2,pt.y-2,pt.x+2,pt.y+2);

       }

/* 将旧画笔选回设备环境*/

   pDC->SelectObject(pLinePen);

/*删除辅助点*/   ParsplPoint.RemoveAt(ParsplPoint.GetUpperBound());

 

}

 

void CParspl::DrawCloseLine(CDC *pDC)

{

    if(ParsplPoint.GetSize() < 4) return;

       CPen LinePen(m_nLineStyle,m_nLineWidth,m_crLineColor);

    int i=0,j=0;

    int n=0;

    n=ParsplPoint.GetSize();

    double t1,t2,t3,t,a,b,c,d,x,y;

       ParsplPoint[0].x=ParsplPoint[n-1].x;

       ParsplPoint[0].y=ParsplPoint[n-1].y;

       CPoint pt=ParsplPoint.GetAt(1);

    ParsplPoint.Add(pt);

    pt=ParsplPoint.GetAt(2);

    ParsplPoint.Add(pt);

    t=0.5f/Clip;

       CPen *pLinePen=pDC->SelectObject(&LinePen);

       pDC->MoveTo(ParsplPoint[1].x,ParsplPoint[1].y);

       for (i=0;i<n-1;i++)

       {

              for(j=1;j<Clip;j++)

              {

                     t1=j*t;

                     t2=t1*t1;

                     t3=t2*t1;

                     a=4.0*t2-t1-4.0*t3;

                     b=1.0-10.0*t2+12.0*t3;

                     c=t1+8.0*t2-12.0*t3;

                     d=4.0*t3-2.0*t2;

                     x=a*ParsplPoint[i].x+b*ParsplPoint[i+1].x+c*ParsplPoint[i+2].x+d*ParsplPoint[i+3].x;

                     y=a*ParsplPoint[i].y+b*ParsplPoint[i+1].y+c*ParsplPoint[i+2].y+d*ParsplPoint[i+3].y;

                     pDC->LineTo(int(x),int(y));

              }

              pDC->LineTo(ParsplPoint[i+2].x,ParsplPoint[i+2].y);

       }

       for(i=0;i<n;i++)

       {

              pt=ParsplPoint.GetAt(i);

              pDC->Ellipse(pt.x-2,pt.y-2,pt.x+2,pt.y+2);

       }

/*将旧画笔选回设备环境*/

       pDC->SelectObject(pLinePen);

/*删除最后两个辅助点*/

       ParsplPoint.RemoveAt(ParsplPoint.GetUpperBound());

       ParsplPoint.RemoveAt(ParsplPoint.GetUpperBound());

}

 

程序效果图:

自由端曲线:

 封闭端曲线:

 

 

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3976693次
    • 积分:45634
    • 等级:
    • 排名:第78名
    • 原创:766篇
    • 转载:80篇
    • 译文:3篇
    • 评论:2470条
    公告


    真名:朱金灿
    主要经历:本科毕业于CUG(武汉)的GIS专业,毕业后参加工作,现在在北京从事软件开发和团队管理工作。曾获有色金属工业科技进步奖二等奖(获奖证书链接)。
    我的联系方式:
    EMAIL:clever101#163.com
    研究方向:
    数字图像处理、计算机图形学。

    本博客内容除非特殊说明均属原创,如需转载、引用其中的部分文字,请注意以下几点:

    1)如果我的博客侵犯了你的版权,请给我邮件:clever101#163.com,经核实后我会做出合适的处理。

    2)请在转载(引用)的内容提供本博客中相应文章的链接。如你的作品为非电子读物或纯文本,请给出链接的url。

    3)请勿将我的原创文章用于商业用途。

    4)如果愿意,请给我邮件:clever101#163.com,让我知道我的东西到哪去了。谢谢!

    5)我可以尽我所能回复你在评论中提到的问题,但一般不会给你发邮件,所以请勿留邮箱地址.

    文章存档
    最新评论