关闭

大数定律---频率代替概率

788人阅读 评论(0) 收藏 举报
分类:

为什么我们在搜索引擎的某些计算公式过程中常用某个词的出现频率来代替概率p 呢?

这个代替准不准,有什么依据?


从下面的公式定理中我们可以看到,对于抽样的样本量一定要大,否则用频率代替概率是不准确的

而在互联网中,数据是海量的,所以抽样完全可以完成转换


表现形式

大数定律有若干个表现形式。这里仅介绍高等大学概率论要求的常用的三个重要定律:
  • 切比雪夫大数定理
是一列两两不相关的随机变量,每一随机变量都有有限的方差
,且它们有公共的上界,则对任意小的正数 ε,满足公式一
公式一
将该定律应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。
  • 伯努利大数定律
设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二
贝努里大数定律

贝努里大数定律

公式二
该定律是切贝雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。
在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。
辛钦大数定律:常用的大数定律之一
设{a i,i>=1}为独立同分布的随机变量序列,若Ai的数学期望存在,则服从大数定律:
即对任意的ε>0,公式三成立。
公式三
0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:431491次
    • 积分:4469
    • 等级:
    • 排名:第6594名
    • 原创:64篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    说明
    分享点滴