poj 1265 Area (Pick公式)

原创 2017年01月02日 21:02:31

Area
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6406   Accepted: 2810

Description

Being well known for its highly innovative products, Merck would definitely be a good target for industrial espionage. To protect its brand-new research and development facility the company has installed the latest system of surveillance robots patrolling the area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are used. Figure 1 shows the course of a robot around an example area. 

 
Figure 1: Example area. 

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself. 

Input

The first line contains the number of scenarios. 
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100 units. 

Output

The output for every scenario begins with a line containing 揝cenario #i:� where i is the number of the scenario starting at 1. Then print a single line containing I, E, and A, the area A rounded to one digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the scenario with a blank line.

Sample Input

2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3

Sample Output

Scenario #1:
0 4 1.0

Scenario #2:
12 16 19.0

Source

[Submit]   [Go Back]   [Status]   [Discuss]


题目大意:求多边形内部的点数,边上的点数和面积。

题解:Pick公式

area = I + E/2 - 1.(I为多边形内的格点数,E为边上的格点数,area为多边形面积)

边上的格点数可以用gcd来求解,一条边上的格点数(不算端点)为gcd(abs(x),abs(y))-1,其中x,y为两个端点横纵坐标的相对移动距离。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 1003
using namespace std;
struct point{
	int x,y;
	point (int X=0,int Y=0) {
		x=X,y=Y;
	}
}a[N];
int n;
typedef point vector;
vector operator -(vector a,vector b)
{
	return vector (a.x-b.x,a.y-b.y);
}
int cross(vector a,vector b)
{
	return a.x*b.y-a.y*b.x;
}
int gcd(int x,int y)
{
    int r;
    while(y){
    	r=x%y;
    	x=y;
    	y=r; 
	}
	return x;
}
int main()
{
	freopen("a.in","r",stdin);
	int T; scanf("%d",&T);
	int t=0;
	while (T--){
		t++;
		scanf("%d",&n);
		a[0].x=0; a[0].y=0;
		int count=0;
		for (int i=1;i<=n;i++) {
			int x,y; scanf("%d%d",&x,&y);
			count+=gcd(abs(x),abs(y));
			a[i].x=a[i-1].x+x; a[i].y=a[i-1].y+y;
		}
		a[n+1]=a[1];
		int area=0;
		for (int i=2;i<=n;i++)
		 area+=cross(a[i]-a[1],a[i+1]-a[1]);
		area=abs(area);
		int size=(area+2-count)/2;
		printf("Scenario #%d:\n",t);
		if (area%2)  printf("%d %d %d.5\n",size,count,area/2);
		else printf("%d %d %d.0\n",size,count,area/2);
		printf("\n");
	}
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

poj 1265 Area(Pick公式 多边形面积 边点数)

题目链接     http://poj.org/problem?id=1265                                                        ...
  • x_y_q_
  • x_y_q_
  • 2016年07月26日 19:09
  • 120

POJ 1265 Area [格点多边形面积 pick公式]

题目链接:http://poj.org/problem?id=1265
  • u011394362
  • u011394362
  • 2014年10月10日 09:49
  • 886

POJ 1265 Area (Pick定理&多边形面积)

http://poj.org/problem?id=1265 定理证明见Matrix67——最酷的证明:Pick定理另类证法 注意dx和dy是机器人下一步移动的方向,所以位置要累加。 ...
  • synapse7
  • synapse7
  • 2014年02月13日 20:19
  • 776

POJ题目1265 Area(PICK定理)

Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5248   Accepted:...
  • yu_ch_sh
  • yu_ch_sh
  • 2015年05月03日 22:06
  • 372

POJ 1265 Area (计算几何)(Pick定理)

Area                                                          大意:每次给你一个点的横纵坐标变化值,求有多少点在多边形上,有多少点在...
  • xuechelingxiao
  • xuechelingxiao
  • 2014年03月07日 14:34
  • 706

POJ 1265 Area (有向面积, pick 定理)

pick 定理: S = a + b #include #include #include using namespace std; struct Point { int x,y; ...
  • u013112097
  • u013112097
  • 2014年05月29日 22:57
  • 233

POJ 1265 多边形格点数Pick公式

D - Area Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta...
  • u011466175
  • u011466175
  • 2014年03月16日 16:37
  • 968

POJ265——Area(Pick公式)

注:代码C++AC,16MS,但是G++WA。希望有大神能对此解惑 http://poj.org/problem?id=1265 Area Time Limit: 100...
  • sexgeek
  • sexgeek
  • 2017年05月02日 18:56
  • 65

POJ 1265 Area pick定理 + 多边形面积求法

点击打开链接 题目大意: 给一个平面上的简单多边形,求边上的点,多边形内的点,多边形面积。 解题思路: 这个题用了很多知识点: 1、以格子点为顶点的线段,覆盖的点的个数为GCD(dx,d...
  • became_a_wolf
  • became_a_wolf
  • 2016年04月04日 16:13
  • 299

Area poj1265 (pick公式+网格)

Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6457   Accepted: 2823 D...
  • Gentle_Guan
  • Gentle_Guan
  • 2017年02月09日 20:25
  • 299
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1265 Area (Pick公式)
举报原因:
原因补充:

(最多只允许输入30个字)