Middle-题目103:221. Maximal Square

本文介绍了一个二维0-1矩阵中寻找最大全1正方形并计算其面积的算法。通过动态规划的方法,定义状态转移方程解决该问题,并提供Java实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目原文:
Given a 2D binary matrix filled with 0’s and 1’s, find the largest square containing all 1’s and return its area.
For example, given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 4.
题目大意:
给出一个0-1矩阵,求其中最大的由1组成的正方形,返回其面积。
题目分析:
还是Dp问题,设dp[i][j]为右下角为(i,j)的正方形的边长,则有如下转移方程:
dp[i][j]=min(dp[i1][j],dp[i1][j1],dp[i][j1])+1
初始化第一行(列)的dp[0][i]和dp[j][0]为矩阵的原值。
这个转移方程用文字比较难以描述,在纸上画一下三种情况就很好理解了。
源码:(language:java)

public class Solution {
    public int maximalSquare(char[][] matrix) {
        int row = matrix.length;
        if(row == 0)
            return 0;
        int col = matrix[0].length;
        int maxSquare = 0;
        int[][] dp = new int[row][col];
        for(int i = 0 ;i<col;i++) {
            dp[0][i]=matrix[0][i]-'0';
            if(matrix[0][i] == '1')
                maxSquare = 1;
        }
        for(int i = 0;i<row;i++) {
            dp[i][0]=matrix[i][0]-'0';
            if(matrix[i][0] == '1')
                maxSquare = 1;
        }
        for(int i = 1;i<row;i++) {
            for(int j=1;j<col;j++) {
                if(matrix[i][j] == '1') 
                    dp[i][j] = Math.min(dp[i-1][j], Math.min(dp[i-1][j-1], dp[i][j-1]))+1;
                if(dp[i][j] > maxSquare)
                    maxSquare = dp[i][j];
            }
        }
        return maxSquare*maxSquare;
    }
}

成绩:
14ms,beats 58.15%,众数17ms,11.81%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值