hdu 5898 odd even number(acm/icpc沈阳赛区网络赛,数位DP)

传送门: http://acm.hdu.edu.cn/showproblem.php?pid=5898

题目大意:
定义odd-even-number是一个数,其中连续奇数位的长度是偶数,连续偶数位的长度是奇数。
问[L,R]里有几个odd-even number?

题目分析:
其实呢我知道数位DP是干什么用的,但是没见过相关的题,所以即使一眼就看出用数位dp做,但却看了一天题解才弄懂这道题。

其实一开始我理解错题意了,以为是只要存在连续奇数位长度为偶数、连续偶数位长度为奇数就可以,但跑了一下别人的ac代码,发现并不是。
因为11222是odd-even-number,112221就不是,但1122233就是。
所以其实题意应该是,所有连续奇数位的长度都是偶数(包括0),所有连续位偶数的长度都是奇数。

这里用dp[i][j][k]表示,pos位,前一位是j,j那位前面有k个连奇或连偶的数的odd-even-number数。因为每次累加的时候都必须是满足pos往前k位满足连奇或连偶才加进去的,而pos+k位以上的又已经确保符合定义,所以是与当前子问题无关的。因此满足DP性质,go!

这里有两个要注意的,就是在搜索解的时候,要注意前导0,即假如要找1~12345范围内的解,我们是要从00001 搜索到 12345。而前导0对奇偶性是不影响的(即不算入连续偶数),第二个要注意的是搜索到第pos位的时候,该位的取值范围未必是0-9,是否有限制受高位影响(如果高位有限制,且当前数和上限的对应位相等)。

那么关键的问题来了,你DP总要有个转移方程啊,转移方程是什么呢?

我们记up代表第i位上的取值上限(可能是9,也可能是输入的那个上限r的对应位),那么有:

dp[i][j][k]=s=1updp[i1][s][k+1/1]

第三个下标取1还是k+1根据j和k的奇偶性判断。如果j奇k偶,或者j偶k奇,那么如果s跟j同奇偶性,就取k+1,否则取1(因为这时候前面的k位已经确保是解了,奇偶性变了自然从1再开始算),如果j、k奇偶性相同,那么只有s跟j同奇偶性才是解,而且取k+1,(例如前面是112222,如果再放一个1往下搜,就是不符合定义的)

然后编码的时候记住从高往低,深度优先搜索,因为位数是从pos-1到0的,所以从pos-1开始搜,搜到-1的时候说明前面都搜完了,只要看最后一轮连续数是否符合定义就好。

这题看了大半天,好。。。菜。。。啊。。。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int t;
ll l,r;
ll dp[20][20][20];
int bit[20];
ll dfs(int pos,int j,int k,bool lead,bool limit) {
    //pos位开始,上一位是j,连续的奇数或者偶数有k,有没有前导0,第pos位是否有上界(即如果求1~8000,最高位只能取到8)
    //返回这一条件下,符合答案的数
    if(pos==-1)
        return (j+k)%2;
    if(!limit && !lead && dp[pos][j][k]!=-1)
        return dp[pos][j][k];

    int up = limit?bit[pos]:9; //范围到up
    ll ans=0;

    if(lead) {
        for(int i=0;i<=up;i++) {
            ans+=dfs(pos-1,i,1,i==0,limit && i==bit[pos]);
        }
    }
    else if((j+k)%2==1) {
        for(int i=0;i<=up;i++) {
            if((i+j)%2==0)
                ans+=dfs(pos-1,i,k+1,false,limit && i==bit[pos]);
            else
                ans+=dfs(pos-1,i,1,false,limit && i==bit[pos]);
        }
    }
    else {
        for(int i=0;i<=up;i++) {
            if((i+j)%2==0)
                ans+=dfs(pos-1,i,k+1,false,limit && i==bit[pos]);
        }
    }

    if(!limit && !lead)
        dp[pos][j][k] = ans;
    return ans;
}

ll solve(ll x) { //计算[1,x]内有少符合条件的数
    int pos=0;
    bit[0]=0;
    while(x) {//把数字x按位拆开放进数组里面,从最高位在pos-1,最低位是0
        bit[pos++]=x%10;
        x/=10;
    }
    // for(int i=0;i<pos;i++)
    //     printf("bit[%d] = %d\n", i,bit[i]);
    return dfs(pos-1,0,1,true,true);
}
int main() {
    scanf("%d",&t);
    memset(dp,-1,sizeof(dp));
    for(int i=1;i<=t;i++) {
        scanf("%I64d %I64d",&l,&r);
        printf("Case #%d: %I64d\n", i,solve(r)-solve(l-1));
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值