逻辑回归LR的特征为什么要先离散化

转载 2015年11月19日 20:15:10

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:

1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易scalable(扩展)。

2. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰。

3. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合。

4. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力。

5. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问。

李沐少帅指出,模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。

大概的理解:

1)计算简单

2)简化模型

3)增强模型的泛化能力,不易受噪声的影响

逻辑回归LR的特征为什么要先离散化

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易sc...

决策树、逻辑回归、线性回归使用时注意事项以及模型过拟合策略

决策树缺点和注意事项: 决策树的最大缺点是原理中的贪心算法。因此它所做的选择只能是某种意义上的局部最优选择。 若目标变量是连续变量,那么决策树就不使用了,改用回归模型 若某些自变量的类别种类较多,或者...

【系统信息获取】6,获取CPU核心数目

1,涉及API GetSystemInfo 原型: void WINAPI GetSystemInfo ( _Out_ LPSYSTEM_INFO lpSystemInfo ); SYS...
  • dpsying
  • dpsying
  • 2014年02月10日 16:29
  • 1250

VC++中List Control控件的使用方法介绍

List Control控件是使用频率比较高的一个控件,用它可以很好的做为数据报表的工具,而且比较方便操作和响应,经常可以和数据库相互配合,它就像数据库中的一张表一样,来显示数据库中的数据。 下面结...

机器学习 LR逻辑回归算法

  • 2017年02月18日 10:51
  • 10KB
  • 下载

逻辑回归LR推导(sigmoid,损失函数,梯度,参数更新公式)

主要参考文献:The equivalence of logistic regression and maximum entropy models,John Mount 一、声明 x(1),x(2),...

特征离散化-Facebook

  • 2015年08月06日 09:23
  • 774KB
  • 下载

逻辑回归模型(Logistic Regression, LR)基础<转>

逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:逻辑回归LR的特征为什么要先离散化
举报原因:
原因补充:

(最多只允许输入30个字)