逻辑回归LR的特征为什么要先离散化

转载 2015年11月19日 20:15:10

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:

1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易scalable(扩展)。

2. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰。

3. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合。

4. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力。

5. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问。

李沐少帅指出,模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。

大概的理解:

1)计算简单

2)简化模型

3)增强模型的泛化能力,不易受噪声的影响

逻辑回归LR的特征为什么要先离散化

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易sc...
  • yang090510118
  • yang090510118
  • 2014年09月22日 16:26
  • 8996

LR其实是可以做一下特征离散化的

今天听组里人聊天,说LR需要把特征离散化,但是GBDT并不需要把特征离散化;我很疑惑,我记得lr并不需要离散化啊。后来听他们说,LR更适合处理稀疏数据,那么把特征先离散化到4个特征维度(假设的),然后...
  • tianbwin2995
  • tianbwin2995
  • 2016年07月29日 09:48
  • 1400

为什么要将连续特征离散化

在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 0. 离散特征的增加和减少都很容易,易于模型的快速迭代; 1...
  • rosenor1
  • rosenor1
  • 2016年08月31日 19:33
  • 593

连续特征离散化达到更好的效果,特征选择的工程方法

http://www.zhihu.com/question/31989952 连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果? Q:CTR预估,发现CTR预估一般都是用LR,而...
  • lujiandong1
  • lujiandong1
  • 2015年11月23日 13:19
  • 5329

特征工程--特征离散化的意义

连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果? Q:CTR预估,发现CTR预估一般都是用LR,而且特征都是离散的。为什么一定要用离散特征呢?这样做的好处在哪里? ...
  • wang1127248268
  • wang1127248268
  • 2017年08月17日 22:03
  • 391

连续特征离散化和归一化

连续特征进行离散化处理。
  • hero_fantao
  • hero_fantao
  • 2014年06月25日 22:12
  • 5969

<转>逻辑回归LR的特征为什么要先离散化

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易sc...
  • yongjian_luo
  • yongjian_luo
  • 2017年01月06日 18:14
  • 152

逻辑回归离散特征

在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:0. 离散特征的增加和减少都很容易,易于模型的快速迭代;1. 稀疏...
  • a936676463
  • a936676463
  • 2015年12月18日 23:37
  • 2324

特征离散化解决非线性特征问题

在实际工作中,需要使用到譬如LR这种线性分类器的时候,往往需要将特征离散化成0/1特征,之后再进行模型训练。 下面举例说明原因: 我们假设决策面为y=x^2,且模型是只具有一维特征x的线性模型,即模型...
  • u011086367
  • u011086367
  • 2016年10月21日 08:37
  • 587

分类算法系列2----逻辑回归特征选择

备注:以下均参考Python数据分析和数据挖掘实战 在利用Scikit-Learn对数据进行逻辑回归之前。首先进行特征筛选。特征筛选的方法很多,主要包含在Scikit-Learn的 feature-...
  • u012535605
  • u012535605
  • 2017年04月24日 22:35
  • 1675
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:逻辑回归LR的特征为什么要先离散化
举报原因:
原因补充:

(最多只允许输入30个字)