关闭

20170103:for 统计思维

49人阅读 评论(0) 收藏 举报
分类:

1.异常值就是远离集中趋势的值,异常值有可能是采集和处理数据过程中的错误导致的,也有可能是罕见的正确结果。

2.概率质量函数(ProbabilityMass Function,PMF):以函数的形式表示分布,该函数将值映射到概率。如果要处理的比较少,PMF很合适;但随着数据的增加,每个值的概率就会降低,而随机噪声的影响就会增大。

3.相对风险(relativerisk)两个概率的壁纸,通常用于衡量两个分布的差异。

4.贝叶斯事件。贝叶斯定理通常用于解释某一特定现象的证据E如何影响假设H的概率。


在看到E之后H的概率,等于看到该证据前H的概率,乘以假设H为真的情况下看到该证据的概率与在任何情况下看到该证据的概率的比值。为先验概率,而为后验概率,是证据的似然值,是归一化常量。

5.相关系数可以衡量两个变量之间线性相关的强度和正负,但是无法知道它们的斜率。有很多方法可以用来估计斜率,其中线性最小二乘拟合是最常用的一种方法。线性拟合指的是用一个线性的方程来拟合两个变量之间的关系。最小二乘法是使拟合函数与数据之间的均方误差达到最小的拟合方法。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:11480次
    • 积分:590
    • 等级:
    • 排名:千里之外
    • 原创:49篇
    • 转载:7篇
    • 译文:0篇
    • 评论:0条