博客专栏  >  架构   >  机器学习实战

机器学习实战

机器学习,当下就业热门方向,系统地学习后,分享理论重点及个人理解。

关注
11 已关注
6篇博文
  • 《机器学习实战》——朴素贝叶斯算法

    基本原理:统计特征在数据集中取某个特定值的次数,再除以数据集实例总数,就是特征取该值的概率。选择各概率中最高的一个,对应的类别就是所求的值。即,选择具有最高概率的决策。使用条件概率来分类,使用贝叶斯准...

    2015-10-22 21:40
    720
  • 《机器学习实战》——决策树

    基本原理:每个数据集都有一个或者多个特征作为已知条件,现在根据这些特征分类。K-近邻算法是已知部分分类,通过比较特征距离来将新的数据划分到旧的分类,但是你不知道它是如何划分,也就不知道分类是什么含义。...

    2015-10-22 11:37
    639
  • 《机器学习实战》——回归

    基本原理:已知输出的目标变量形式,利用样本求出参数。 如果将监督学习比作分类,那么回归可以看作拟合。 前者输入一串特征,输出类别;后者输入一串特征,输出连续函数(线性、非线性)。 如果要进行线性拟合,...

    2016-03-08 21:22
    440
  • 《机器学习实战》——logistic回归

    基本原理:现在有一些数据点,用一条直线对这些数据进行拟合,将它们分为两类。这条直线叫做最佳拟合直线,这个拟合过程叫做回归。logistic回归的思想是,利用一个阶跃函数(在某一点突然由0变1),实现分...

    2015-10-24 22:08
    574
  • 《机器学习实战》—K-近邻算法

    基本原理:通过计算新数据与给定的样本数据之间的距离,来确定相似度排名;然后取前K个最相似的样本,统计这k(一般不大于20)个样本中出现最多的分类,设为新数据的分类。 关键词:新数据,训练样本集,样本数...

    2015-10-21 16:41
    615
  • 《机器学习实战》——数据降维技术

    1. PCA降维 2. 奇异值分解

    2016-03-10 15:39
    625

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部