博客专栏  >  云计算/大数据   >  深度学习实践

深度学习实践

描述主要深度学习算法,包抱感知器模型、BP网络、卷积神经网络(CNN)、递归神经网络(RNN)、Autoencoder、受限的波尔兹曼机(RBM)、深度信念网络(DBN)等,并探讨用Theano框架来实现这些网络模型。

关注
241 已关注
15篇博文
  • 深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现

    在上一篇博文中,我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节。在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识...

    2016-09-07 06:28
    3808
  • 深度学习算法实践14---去噪自动编码机(dA)的Theano实现

    在明白了去噪自动编码机(dA)的理论之后,在本篇博文中,我们将讨论用Theano来实现一个去噪自动编码机。通过上篇博文的讨论,我们知道去噪自动编码机(dA)工作主要有四步组成:第一步是向原始输入信号中...

    2016-09-02 11:00
    2864
  • 深度学习算法实践13---去噪自动编码机(Denosing Autoencoder)

    截至目前为止,我们所讨论的神经网络技术,感知器模型、BP网络、多层卷积神经网络(CNN),都可以视为前馈神经网络的变形,都会采用信号前向传播,误差反向传播修正连接权值,采用有监督学习方式,解决样本分类...

    2016-08-31 17:57
    5495
  • 深度学习算法实践12---卷积神经网络(CNN)实现

    在搞清楚卷积神经网络(CNN)的原理之后,在本篇博文中,我们将讨论基于Theano的算法实现技术。我们还将以MNIST手写数字识别为例,创建卷积神经网络(CNN),训练该网络,使识别误差达到1%以内。

    2016-08-30 12:50
    4712
  • 深度学习算法实践11---卷积神经网络(CNN)之卷积操作

    卷积神经网络(CNN)主要特性有:稀疏连接和权值共享、卷积操作、池化。在前一篇博文中我们已经讨论了稀疏连接和权值共享,在本篇博文中,我们将介绍卷积操作和池化。正是由于对图像进行卷积操作,卷积神经网络才...

    2016-08-29 18:20
    4276
  • 深度学习算法实践10---卷积神经网络(CNN)原理

    其实从本篇博文开始,我们才算真正进入深度学习领域。在深度学习领域,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别、视频识别、语音识别领域取得了巨大的成功,正是...

    2016-08-26 14:46
    6121
  • 深度学习算法实践9---用Theano实现多层前馈网络

    我们到目前为止,使用逻辑回归模型已经可以对简单的线性可分问题进行了研究,不仅对MNIST手写数字识别样本集进行了训练和识别,我们还对二维平面上的点是否在y=x这条直线上进行了判断,有了这两个例子,尤其...

    2016-08-25 17:39
    2254
  • 深度学习算法实践8---BP算法详解

    BP算法是关于误差的反向传播算法,就是从输出层开始,将结果与预期结果相比较,求出误差,然后按照梯度最大下降方向,调整神经元的联接权值,然后依次逐层调整各层之间的连接权值,对于批量学习方式而言,不断重复...

    2016-08-24 19:06
    3524
  • 深度学习算法实践7---前向神经网络算法原理

    在本文中,我们对感知器模型的算法进行了推导,为我们对多层前馈网络(BP)的误差反向传播算法打下基础。

    2016-08-22 18:16
    3520
  • 深度学习算法实践6---逻辑回归算法应用

    在上篇博文中,我们介绍了深度学习算法的实现,并且以MNIST手写数字识别为例,验证了该算法的有效性。但是我们学习逻辑回归算法的目的是解决我们的实际问题,而不是学习算法本身。逻辑回归算法在实际中的应用还...

    2016-08-11 14:45
    2500
  • 深度学习算法实践5---线性回归算法实现

    在学习了基本的Theano的概念之后,我们可以将这些知识用来进行一些简单的应用,在这篇文章中,我们将实现一个简旱的逻辑回归算法,并将该算法用于二维平面上的点是位于y=x之上还是之下。其实,Theano...

    2016-08-10 14:11
    5471
  • 深度学习算法实践4---Theano常用技巧

    在上一篇文章中介绍了神经网感知器模型中用到的一些算法,在这篇文章中,将继续介绍这些常用的算法,首先是随机数的生成,因为感知器模型必须用随机数来初始化连接权值,其次是求导数,因为感知器学习算法是,会用到...

    2016-08-08 13:20
    1759
  • 深度学习算法实践3---神经网络常用操作实现

    在这篇文章中,我们介绍了实现一个神经网络中最简单的感知器模型,我们介绍了Theano中的相关函数,并对其中的关键步聚给出了代码实现,读者可以基于这些代码,参考神经网络教材,实现出一个完整的感知器模型。

    2016-08-05 10:46
    1915
  • 深度学习算法实践2---线性代数和Numpy的使用

    使用Theano和Numpy实现一些线性代数的基本操作,如常数与矩阵相乘,标量加法和矩阵乘法。

    2016-08-04 14:54
    2168
  • 深度学习算法实践1---开发环境搭建

    本文将在Mac环境下,配置深度学习算法的开发环境,我们会采用python3.x作为开发语言,在深度学习框架方面,没有选择最为流行的TensorFlow,而是在研究者中比较流行的Theano。主要是因为...

    2016-08-03 18:00
    2873
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部