博客专栏  >  编程语言   >  Machine Learning

Machine Learning

记录学习 Machine Learning 时的一些理解与收获。

关注
0 已关注
9篇博文
  • 使用pelican搭建一个Jupyter Notebook数据科学博客

    写博客是一个证明你的技能,进一步加深学习和积累受众的一个非常好的方式。已经有非常多的数据科学和编程博客帮助它们的作者找到工作,或是建立了非常重要的联系。撰写博客是任何一个有想法的programmer或...

    2016-10-15 08:31
    4949
  • 27个Jupyter Notebook小提示与技巧

    Jupyter NotebookJupyter notebook, 前身是IPython notebook, 它是一个非常灵活的工具,有助于帮助你构建很多可读的分析,你可以在里面同时保留代码,图片,评...

    2016-10-15 08:38
    22481
  • 推荐系统评测标准TOPN之precision与recall

    1.关于推荐系统topN的评估指标:precision(精确率)和recall(召回率) 关于准确率应该比较容易理解。但是召回率可能有点绕。下面是我觉得比较容易理解的解释: 准确率和召回率是广...

    2015-06-17 21:51
    1088
  • 推荐系统常见评测标准之MAP与NDCG

    MAPAP在了解MAP(Mean Average Precision)之前,先来看一下AP(Average Precision), 即为平均准确率。对于AP可以用这种方式理解: 假使当我们使用goog...

    2016-08-24 09:06
    1974
  • 10 分钟理解 PyTorch 代码

    本文译自: Understand PyTorch code in 10 minutesPyTorch 是一个新的深度学习框架. 本文的内容基于 Justin Johnson 的 教程, 如果想要有更多...

    2017-07-01 15:25
    523
  • 理解梯度下降

    机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ)L(\Theta) ,并且常是最小化的一个优化问题: min L(Θ)min \ L \left(\Theta\right) 我们所追求的是...

    2016-05-05 13:30
    7285
  • 理解机器学习中的偏差与方差

    学习算法的预测误差, 或者说泛化误差(generalization error)可以分解为三个部分: 偏差(bias), 方差(variance) 和噪声(noise). 在估计学习算法性能的过程中,...

    2017-05-04 13:02
    1549
  • 详解 MNIST 数据集

    MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下.MNIST 数据集可在 http://yan...

    2017-07-17 20:41
    7724
  • Python Machine Learning - 感知器算法

    感知器 (perceptron) 算法的历史就不介绍了,大意就是想法来自生物学的神经元的一些工作方式,多个生物信号 (input singals) 到达树突 (dentrites)并进入细胞核 (ce...

    2017-01-19 21:13
    1702

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部