博客专栏  >  互联网   >  MxNet

MxNet

MXNet是一个深度学习工具,兼具高效性和灵活性。它支持混合符号式编程和命令式编程,以最大化执行效率和开发效率。

关注
6 已关注
26篇博文
  • MxNet系列——Windows上安装MxNet

    开发环境 操作系统:Win7 64bit C++编译器:Visual Studio 2010 Python环境:Python 2.7.12 (Anaconda 4.1) 安装过程 下载MxNet预编译...

    2016-12-22 20:46
    6263
  • MxNet系列——how_to——perf

    性能下面是一些技巧,以尽可能的获取MXNet的最佳性能。数据对于输入数据,需要注意以下内容: 数据格式。尽量使用 rec 格式。 解码。MXNet默认使用4个线程对图像进行解码。这对于每秒钟解码100...

    2017-02-08 15:33
    232
  • MxNet系列——how_to——torch

    如何将MXNet用作Torch的前后端本章节描述了如何将MXNet用作Torch的两个主要功能(前端和后端): 使用MXNet.NDArray来调用Torch的张量数学函数。 将Torch的神经网络...

    2017-02-08 15:36
    273
  • MxNet系列——how_to——smart_device

    将深度学习库压缩成一个文件,以便移植到智能设备中深度学习系统是复杂的,并且常常有些依赖环境。将深度学习库移植到不同的平台上,尤其是智能设备上,是一件十分痛苦的事情。 一个简单的方法是:提供一个轻量级的...

    2017-02-08 15:37
    315
  • MxNet系列——how_to——new_op

    如何创建新的操作符(网络层)本节内容描述了创建新的MXNet操作符(或网络)的过程。我们已经尽了最大努力为最常用的案例提供高性能操作符。然而,如果你需要自定义一个网络层,比如新的损失函数,有两个选择:...

    2017-02-08 15:38
    717
  • MxNet系列——how_to——multi_devices

    在多个CPU/GPUs上以数据并行方式运行MXNetMXNet 支持在多个CPUs和GPUs上进行训练。其中,这些CPUs和GPUs可能位于不同的物理机上。 数据并行 vs 模型并行MXNet模式使用...

    2017-02-08 15:40
    1133
  • MxNet系列——how_to——model_parallel_lstm

    使用模型并行的方式在多个GPUs上训练LSTM由于复杂的数据依赖,LSTM评价很困难。LSTM的训练过程,在反向传播阶段有更严重的逆序的数据依赖,更加难以并行化。获取有关LSTM更通用信息,请查看优秀...

    2017-02-08 15:41
    660
  • MxNet系列——how_to——index

    MXNet 怎么办系列How-tos 提供了一系列的有关安装,基本概念,说明,命令和使用预训练模型完成的例程指南。下面的主题解释了基本概念,并为特定任务提供了步骤。其中一些包含了使用预训练模型完成的例...

    2017-02-08 15:46
    216
  • MxNet系列——how_to——faq

    常见问题本节回答了 mxnet/issues上的常见问题。在提问前,请先检查该页面。如果你想要贡献本页面,请尽量使问题和答案简单。如果你的回答非常详细,请发布在其它地方并提供链接。构建和安装关于构建和...

    2017-02-08 15:46
    196
  • MxNet系列——how_to——env_var

    环境变量=====================环境可以修改MXNet的一些设置。一般情况下,你不需要修改这些设置。本节将它们罗列出来,用于参考。设置线程数目 MXNET_GPU_WORKER_NT...

    2017-02-08 15:48
    420
  • MxNet系列——how_to——develop_and_hack

    开发和 Hack MXNet 创建新的操作符 在MXNet中使用Torch 设置MXNet的环境变量 其它资源 概述 MXNet的系统架构 贡献者指南

    2017-02-08 15:51
    161
  • MxNet系列——how_to——cloud

    在云上配置MXNet从头开始设置一个AWS的GPU集群本节提供了如何设置AWS集群以使用MXNet的详细教程。描述了如何: Use Amazon S3 to host data Set up an E...

    2017-02-08 15:51
    426
  • MxNet系列——how_to——caffe

    如何在MXNet中使用Caffe操作符Caffe 是一个有名的,广泛使用的深度学习框架。MXNet 支持在它的符号图中,直接调用大部分Caffe操作符(网络层)和损失函数。使用自定义的Caffe网络层...

    2017-02-08 15:52
    329
  • MxNet系列——how_to——bucketing

    在MXNet中使用BucketingBucketing是一种训练多个不同但又相似的结构的网络,这些网络共享相同的参数集。一个典型的应用是循环神经网络(RNNs)。在使用符号网络定义的工具箱中,实现RN...

    2017-02-08 15:52
    606
  • MxNet系列——model_zoo——index

    MXNet的模型园地MXNet 突出了学术论文中报告的最先进模型的快速实现。我们的模型园地(Modle Zoo)包含了完整的模型,Python脚本,预训练的权重和如何进行微调的说明文档。如何贡献一个预...

    2017-02-08 15:55
    744
  • MxNet系列——get_started——index

    MXNet: 一个大规模的深度学习框架MXNet 是一个开源框架,它允许你在多种设备(从云架构到移动设备)上定义,训练和部署深度神经网络。MXNet 是一个可拓展的深度学习工具,它允许快速训练模型,支...

    2017-02-08 15:57
    265
  • MxNet系列——get_started——overview_zh

    下面是MXNet的综述(中文版),英文读者请阅读 NIPS LearningSys paperMXNet设计和实现简介神经网络本质上是一种语言,我们通过它来表达对应用问题的理解。例如我们用卷积层来表达...

    2017-02-08 15:58
    310
  • MxNet系列——get_started——windows_setup

    Windows上安装 MXNet在Windows上,你可以直接下载和安装已经编译过的MXNet工具包,或者自行下载,构建,安装MXNet。构建MXNet共享库(动态链接库)两种方法:既可以直接下载并使...

    2017-02-08 15:58
    485
  • MxNet系列——get_started——ubuntu_setup

    Installing MXNet on UbuntuMXNet现在支持的语言包括:Python, R, Julia 和 Scala等。 对于Ubuntu操作系统上的Python和R用户来说,MXNet...

    2017-02-08 15:59
    319
  • MxNet系列——get_started——docker_setup

    在Docker上运行MXNetDocker 是一个系统,它允许你构建一个自包含的Linux操作系统,该操作系统可以在你的计算机上孤立的运行。 在自包含的Linux系统中,你可以运行MXNet和其它软件...

    2017-02-09 11:24
    420

Eigen基础
78531
PCL
1059192

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部