博客专栏  >  综合   >  机器学习

机器学习

欢迎前往我的GitHub查阅:https://github.com/HuangQinJian/Machine-Learning

关注
4 已关注
8篇博文
  • 机器学习之拉格朗日乘数法

    在数学最优问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n...

    2016-11-19 18:39
    464
  • 机器学习之Validation(验证,模型选择)

    对于机器学习的模型选择来说,即使只是对于二元分类,我们已经学习了很多方法,比如PLA,LR等;很多学习算法都是可迭代的,需要决定迭代次数;你可能还需要决定每一次迭代走多大,例如梯度下降;或者有很多的转...

    2017-02-08 10:59
    1466
  • 机器学习之Logistic回归(逻辑蒂斯回归)

    Logistic回归又称Logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率。

    2017-02-05 17:38
    1611
  • 机器学习之决策树(Decision Tree)及其Python代码实现

    决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。...

    2017-02-10 17:55
    2807
  • 机器学习之初识SVM

    本文转载自知乎问题  支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推...

    2017-02-11 14:34
    852
  • 机器学习之深入理解SVM

    在浏览本篇博客之前,最好先查看一下我写的另一篇文章机器学习之初识SVM,这样可以更好地为了结一下内容做铺垫!

    2017-02-11 18:21
    3814
  • 机器学习之深入理解K-means、与KNN算法区别及其代码实现

    K-means方法是一种非监督学习的算法,它解决的是聚类问题。

    2017-02-14 09:07
    4852
  • 机器学习之深入理解神经网络理论基础、BP算法及其Python实现

    人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好...

    2017-02-16 09:25
    1824

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部