博客专栏  >  互联网   >  机器学习要点

机器学习要点

斯坦福人工智能实验室是人工智能领域的扛把子。本笔记是于NG的CS229课程的讲解做出,NG风度翩翩,逻辑清晰,有着理工男特有的人格魅力。本笔记也会结合《统计学习方法》和林轩田《机器学习基石》对NG课程没有展开的点做通俗的说明,一来做到理清知识点关系,二来可以备忘,温故知新。

关注
4 已关注
15篇博文
  • 第15课-隐含语义索引、奇异值分解和独立成分分析

    第15个视频,NG介绍了PCA的两个应用隐含语义索引(Latent Semantic Index,LSI)和奇异值分解(Singular Value Decomposition,SVD),之后开始另一...

    2017-03-22 16:02
    499
  • 第14节-主成分分析

    第14个视频讲的是主成分分析(PCA),这是一种降维的方法,关于主成分分析的应用LSI和SVD,在第十五个笔记中会有介绍。

    2017-03-21 16:12
    360
  • 第13节-混合高斯模型,混合贝叶斯模型,因子分析及其EM求解

    NG的第13个视频讲解混合高斯模型,混合贝叶斯模型,因子分析及其EM求解。这部分偏向理论推导,看完视频觉得晕晕的,不知道具体可以实施在什么地方。因此在第十三节引用一篇对我个人非常有帮助的博客,也是讲解...

    2017-03-21 10:42
    651
  • 第12节-K-means算法,高斯混合分布和EM求解算法

    NG的第11个视频讲K-means算法,高斯混合分布和EM求解算法

    2017-03-21 09:42
    528
  • 第11节-贝叶斯正则化与ML应用建议

    NG的第11个视频讲贝叶斯正则化与ML应用建议

    2017-03-16 12:19
    243
  • 第10节-VC维和模型选取

    NG的第10个视频讲VC维和模型选取。NG举了文本分类的例子,说明模型选取在机器学习中的作用,我个人在实际应用中更习惯使用CHI公式,详细的文本分类的思路和代码可以参看我之前的博客(http://bl...

    2017-03-15 10:18
    413
  • 第9节-偏差与方差、联合界定理和一致收敛定理

    NG的第9个偏差与方差、联合界定理和一致收敛定理。

    2017-03-13 21:20
    774
  • 第8节-核技法、软间隔分类和SMO算法

    NG的第7个视频讲的最大间隔分类和对偶问题。关于SVM,NG用了三个视频才将所有的知识点讲完。本节只是介绍核技法、软间隔分类器、SMO算法。第一个视频讲解SVM直观介绍,函数间隔和几何间隔。第二个视频...

    2017-03-10 12:09
    376
  • 第7节-最大间隔分类和对偶问题

    NG的第7个视频讲的最大间隔分类和对偶问题。关于SVM,NG用了三个视频才将所有的知识点讲完。本节只是介绍最大间隔分类和对偶问题。上个视频讲解SVM直观介绍,函数间隔和几何间隔。第三个视频讲解核技法、...

    2017-03-08 21:51
    341
  • 第6节-多项式事件模型,SVM初步

    NG的第一个视频讲的是课程大纲以及机器学习的应用,本门课程大纲主要包括监督学习,非监督学习,学习理论和加强学习四个部分,便于学生理解机器学习有一个整体的认识。从第二章开始,介绍监督学习中的线性规划问题...

    2017-03-07 21:57
    375
  • 第5节-高斯判别分析和朴素贝叶斯

    第五个视频介绍了高斯判别分析(Gaussian Discriminant Aanalysis)和朴素贝叶斯(Naive Bayes)。

    2017-03-06 17:31
    435
  • 第4节-牛顿方法、指数分布族和广义线性模型

    第四个视频介绍了牛顿方法(Newton’s method),指数分布族和广义线性模型(GLM)。

    2017-01-17 21:39
    651
  • 第3节-局部加权回归、概率解释和罗蒂斯特回归

    第三个视频简单介绍了欠拟合(underfitting)和过拟合(overfitting)的概念。然后开始讲解局部加权回归(locally weighted linear regression),最小二...

    2017-01-17 21:22
    559
  • 第1、2节-线性规划、梯度下降和正规方程组

    监督学习,非监督学习,学习理论和加强学习,便于学生理解机器学习有一个整体的认识。介绍监督学习中的线性规划问题,并且介绍了解线性规划问题的梯度下降和常规方程组的方法。

    2017-01-12 21:00
    722
  • 第0节-斯坦福cs229机器学习笔记

    国内本科和研究生对于机器学习的热情特别高涨,北邮研一开了一门机器学习与模式识别的课程100人的课容量,两秒就抢没了。然而据我观察很多同学学习机器学习的时候有两个问题,第一学习资料杂乱,符号标记不一致导...

    2017-01-15 11:14
    1454

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部