博客专栏  >  架构   >  机器学习&深度学习

机器学习&深度学习

机器学习&深度学习

关注
12 已关注
30篇博文
  • 机器学习之条件随机场(CRF)

    什么是CRFCRF即条件随机场(Conditional Random Fields),是在给定一组输入随机变量条件下另外一组输出随机变量的条件概率分布模型,它是一种判别式的概率无向图模型,既然是判别式...

    2017-11-09 14:46
    367
  • TensorFlow训练单特征和多特征的线性回归

    线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。相关知识可看“相关阅读”。主要思想在TensorFlow中进行线性回归处理重点是将样本和样本特征矩阵化。单特征线性回...

    2017-04-16 12:02
    1986
  • 深度学习的Attention模型

    前言前面看到谷歌发表的运用在机器翻译上的论文《Attention is all you need》,很是让人惊讶,这是一种全新的模型,与之前的经典的seq2seq模型改动较大,它完全摒弃了RNN或CN...

    2017-10-12 09:16
    2226
  • 强化学习

    前言机器学习可以大致分为四类: 监督学习 无监督学习 半监督学习 强化学习 监督学习是利用标记了的样本进行学习,无监督学习则是使用未标记的样本进行学习,这两个是我们最常见的。半监督学习则是样本中只有少...

    2017-10-19 10:23
    417
  • 如何用TensorFlow训练聊天机器人(附github)

    前言实际工程中很少有直接用深度学习实现端对端的聊天机器人,但这里我们来看看怎么用深度学习的seq2seq模型来实现一个简易的聊天机器人。这篇文章将尝试使用TensorFlow来训练一个基于seq2se...

    2017-09-28 08:59
    10576
  • 隐马尔可夫模型的Viterbi解码算法

    前言前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。关于穷举法HMM模型有多种应用,这里说的...

    2017-09-21 08:42
    738
  • TensorFlow实现seq2seq

    前言前面在《深度学习的seq2seq模型》文章中已经介绍了seq2seq结构及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个seq2seq网络结构,该例子能通过训练给定的训练集实现输入...

    2017-09-14 10:46
    1129
  • 深度学习的seq2seq模型

    从rnn结构说起根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合。如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征...

    2017-09-07 16:21
    1497
  • TensorFlow构建循环神经网络

    前言前面在《循环神经网络》文章中已经介绍了深度学习的循环神经网络模型及其原理,接下去这篇文章将尝试使用TensorFlow来实现一个循环神经网络,该例子能通过训练给定的语料生成模型并实现对字符的预测。...

    2017-08-29 16:06
    786
  • 如何用TensorFlow训练词向量

    前言前面在《谈谈谷歌word2vec的原理》文章中已经把word2vec的来龙去脉说得很清楚了,接下去这篇文章将尝试根据word2vec的原理并使用TensorFlow来训练词向量,这里选择使用ski...

    2017-08-24 15:21
    2139
  • GRU神经网络

    前面已经详细讲了LSTM神经网络(文末有链接回去),接着往下讲讲LSTM的一个很流行的变体。GRU是什么GRU即Gated Recurrent Unit。前面说到为了克服RNN无法很好处理远距离依赖而...

    2017-08-17 15:19
    1548
  • 谈谈谷歌word2vec的原理

    word2vec在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。谷歌开源的word2...

    2017-08-10 20:14
    2379
  • LSTM神经网络

    LSTM是什么LSTM即Long Short Memory Network,长短时记忆网络。它其实是属于RNN的一种变种,可以说它是为了克服RNN无法很好处理远距离依赖而提出的。我们说RNN不能处理距...

    2017-08-03 21:21
    1581
  • 循环神经网络

    RNN是什么循环神经网络即recurrent neural network,它的提出主要是为了处理序列数据,序列数据是什么?就是前面的输入和后面的输入是有关联的,比如一句话,前后的词都是有关系的,“我...

    2017-07-28 19:38
    1295
  • 卷积神经网络

    什么是卷积首先看卷积公式y(t)=f(t)∗g(t)=∫∞−∞f(u)g(t−u)duy(t)=f(t)*g(t)=\int_{-\infty} ^{\infty} f(u)g(t-u)du它是通过...

    2017-07-24 18:17
    1008
  • softmax的多分类

    关于多分类我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来...

    2017-07-13 17:38
    1791
  • kmeans实现文本聚类

    需求拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决。kmeans谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心...

    2017-06-22 20:13
    1038
  • 开源一个文本分析项目

    Githubhttps://github.com/sea-boat/TextAnalyzerTextAnalyzera text analizer that can analyze text. so ...

    2017-06-12 18:18
    1172
  • 神经网络的交叉熵损失函数

    常见损失函数 0-1损失函数 L(Y,f(X))={1,0Y != f(X)Y = f(X)L(Y,f(X))=\begin{cases}1,& \text{Y != f(X)}\\0& \text...

    2017-07-04 18:07
    1223
  • 如何用机器学习对文本分类

    需求使用监督学习对历史数据训练生成模型,用于预测文本的类别。样本清洗主要将重复的数据删除掉,将错误无效的数据纠正或删除,并检查数据的一致性等。比如我认为长度小于少于13的数据是无效的遂将之删掉。def...

    2017-05-30 20:21
    782

JDK源码
2374932
自然语言处理
1022964
mysql协议
2026408
Hazelcast
524388
通信框架Tribes
820763
集群
1759276
tomcat内核
81278336
Java并发
1961794
java开源研究
39149538
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部