博客专栏  >  架构   >  机器学习&深度学习

机器学习&深度学习

机器学习&深度学习

关注
11 已关注
29篇博文
  • 机器学习之感知器

    感知器在讲神经网络前先说说感知器,感知器是一种二分类的线性分类模型,输出值取-1或1。感知器是最基础的神经网络,理解好感知器对后面的各种神经网络模型是很有帮助的。如下图, 它可以有多个输入$(x_1...

    2017-05-04 14:37
    633
  • 机器学习之k近邻

    核心思想KNN算法假设给定的训练集中的实例都已经分好类了,对于新的实例,根据离它最近的k个训练实例的类别来预测它的类别。即这k个实例大多数属于某个类别则该实例就属于某个类别。比如k为5,离新实例a最近...

    2017-04-28 20:36
    811
  • TensorFlow训练Logistic回归

    Logistic回归在用线性模型进行回归训练时,有时需要根据这个线性模型进行分类,则要找到一个单调可微的用于分类的函数将线性回归模型的预测值关联起来。这时就要用到逻辑回归,之前看吴军博士的《数学之美》...

    2017-04-22 20:05
    3336
  • 机器学习之朴素贝叶斯分类

    朴素贝叶斯分类所有贝叶斯分类都是基于贝叶斯定理,朴素贝叶斯分类是贝叶斯分类中运用广泛简单的一种,另外,它还基于特征条件独立假设。贝叶斯定理贝叶斯定理是计算条件概率的公式,条件概率即是事件B发生的前提下...

    2017-04-11 19:59
    1695
  • 线性回归之最小二乘法

    线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。最小二乘法线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术...

    2017-03-03 10:51
    934
  • k-means聚类算法

    聚类聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。核心思想根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个...

    2017-03-07 22:01
    2051
  • 机器学习之层次聚类

    层次聚类聚类是将样本进行归类形成K个簇,层次聚类是其中的一种方法。它将数据组成一棵聚类树,过程可以是凝聚形式或分裂形式。核心思想凝聚是一开始将每个样本当做一个聚类,接着通过计算将距离最近的两个聚类合并...

    2017-03-12 20:12
    1515
  • 机器学习的监督学习在研究什么

    什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f...

    2017-03-17 20:05
    2154
  • 机器学习之梯度下降法

    方向导数如图,对于函数f(x,y),函数的增量与pp’两点距离之比在p’沿l趋于p时,则为函数在点p沿l方向的方向导数。记为$\frac{\partial f}{\partial l} = \lim_...

    2017-03-26 20:40
    923

JDK源码
2070699
lucene深入剖析
00
mysql协议
2024730
Hazelcast
523344
通信框架Tribes
820340
集群
1758206
tomcat内核
80269071
Java并发
1959498
java开源研究
39144467
img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部