博客专栏  >  综合   >  机器学习

机器学习

机器学习算法

关注
1 已关注
12篇博文
  • 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 2...

    2017-05-01 13:28
    8396
  • 【机器学习实战】K-邻近算法

    《机器学习实战》笔记k-邻近算法工作原理: 已存在一定的样本数据集合,并且集合中的每一组数据都存在数据标签。这样我们输入没有标签的新数据后,将新数据的每个特征与样本数据集合中的每组数据进行对应的特征比...

    2016-03-22 17:17
    507
  • 机器学习之线性回归及代码示例

    一、线性回归线性回归一般用来做连续值的预测,预测的结果为一个连续值。因训练时学习样本不仅要提供学习的特征向量X,而且还要提供样本的实际结果(标记label),所以它是一种有监督学习。X= { x0 x...

    2016-11-26 00:38
    2157
  • 机器学习之逻辑回归和softmax回归及代码示例

    一、逻辑回归在 机器学习之线性回归 中,我们可使用梯度下降的方法得到一个映射函数hΘ(X)来去贴近样本点,这个函数是对连续值的一个预测。而逻辑回归是解决分类问题的一个算法,我们可以通过这个算法得到一个...

    2016-11-29 16:48
    2010
  • 机器学习之决策树和随机森林及代码示例

    一、决策树决策树学习是机器学习中一类常用的算法。在决策树中,根节点包含样本全集。每个非叶子节点表示一种对样本的分割,通常对应一个划分属性,其将样本分散到不同的子节点中。每个叶子节点对应于决策的结果。因...

    2016-12-09 16:43
    1630
  • 机器学习之机器学习库scikit-learn

    一、 加载sklearn中的数据集datasetsfrom sklearn import datasetsiris = datasets.load_iris() # 鸢尾花卉数据 digits = d...

    2017-02-11 00:44
    629
  • 机器学习之支持向量机SVM及代码示例

    一、线性可分SVMSVM算法最初是用来处理二分类问题的,是一种有监督学习的分类算法。对于线性可分的二分类问题,我们可以找到无穷多个超平面,将两类样本进行区分。(超平面:一维中是一个点;二维中是一条线;...

    2017-02-22 23:07
    1398
  • 机器学习之划分聚类及代码示例

    一、聚类聚类是一种无监督学习,根据样本的内在相似性/距离,将大量未知标记的样本集划分为多个类别,使得同一个类别内的样本相似度较大(距离较小),而不同类别间的样本相似度较小(距离较大)。划分聚类包含K-...

    2017-03-16 21:54
    820
  • 机器学习之层次聚类及代码示例

    一、层次聚类层次聚类是无监督学习方法,可对给定的N个待聚类的样本进行层次的分类,直到某种条件(类的个数、类间的距离超过某个阈值)满足为止。1、层次聚类的划分对于层次聚类,可具体分为:a. 凝聚的(ag...

    2017-03-18 17:18
    788
  • 机器学习之密度聚类及代码示例

    一、密度聚类密度聚类的思想,在于通过计算样本点的密度的大小来实现一个簇/类别的形成,样本点密度越大,越容易形成一个类,从而实现聚类。密度聚类算法可以克服基于距离的聚类算法只能发现凸型集合的缺点,其可根...

    2017-03-18 21:37
    911
  • 机器学习之主成分分析PCA及代码示例

    一、主成分分析(PCA)主成分分析(Principal Component Analysis)是一种常用的降维算法,可通过线性组合的方法将多个特征综合为少数特征,且综合后的特征相互独立,又可以表示原始...

    2017-03-26 14:43
    689
  • 机器学习之朴素贝叶斯模型及代码示例

    一、朴素贝叶斯的推导朴素贝叶斯学习(naive Bayes)是一种有监督的学习,训练时不仅要提供训练样本的特征向量X,而且还需提供训练样本的实际标记Y,是一种基于贝叶斯定理和特征条件独立假设的分类方法...

    2017-04-06 15:07
    1109

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部