博客专栏  >  云计算/大数据   >  机器学习知识图谱

机器学习知识图谱

记录机器学习中相对重要的点滴知识点

关注
15 已关注
25篇博文
  • 机器学习——监督学习习题

    1. SVM和logistic回归分别在什么情况下使用? (1) 两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss...

    2016-03-09 18:35
    607
  • 机器学习:序列模式挖掘算法

    ----------------------------------------------------------------------------------------------------...

    2016-03-14 21:30
    3214
  • 机器学习:L1与L2正则化项

    -------------------------------------------------------------------------------------------- 关于支持向量...

    2016-03-15 10:02
    2742
  • 机器学习:文本挖掘之特征选择

    ----------------------------------------------------------------------------------------------------...

    2016-03-14 21:47
    1907
  • 机器学习:时间序列模型

    ----------------------------------------------------------------------------------------------------...

    2016-03-14 22:16
    8321
  • 机器学习:不均衡样本情况下的抽样

    ----------------------------------------------------------------------------------------------------...

    2016-03-15 09:44
    3274
  • 机器学习:维度灾难问题

    维度灾难问题 维数灾难(英语:curse of dimensionality,又名维度的詛咒),最早由理查德·贝尔曼(Richard E. Bellman)在考虑动态优化问题时首次提出来的术语,用来...

    2016-03-15 10:10
    1289
  • 机器学习:线性回归的基本假设

    ----------------------------------------------------------------------------------------------------...

    2016-03-15 16:33
    1235
  • 深度学习:神经网络

    http://tech.sina.com.cn/i/2016-02-23/doc-ifxprucu3124795.shtml

    2016-03-19 10:49
    1478
  • 机器学习:启发式算法

    启发式算法(heuristic algorithm):相对于最优化算法提出的。 一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计...

    2016-03-19 20:17
    1665
  • 机器学习:线性判别分析LDA

    定义:线性判别式分析(Linear discriminant analysis),又称为Fisher线性判别(Fisher linear discriminant)。 原理:将带上标签的数据(点),...

    2016-03-19 21:54
    449
  • 机器学习:半监督学习

    http://blog.csdn.net/yhdzw/article/details/22733371

    2016-03-19 21:57
    494
  • 机器学习:EM算法

    1. 定义 EM(Expectation Maximization), 期望极大算法,是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。用户含有隐变量的的概率...

    2016-03-20 18:55
    440
  • 机器学习:HMM隐马尔可夫模型用于中文分词

    1. 定义 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都...

    2016-03-26 21:08
    4222
  • 机器学习:决策树之随机森林

    个人理解: 决策树的随机森林本质上是一种bagging方法,是通过组合一系列弱分类器得到强分类器的的过程。随后分4步: (1)随机采样 随机多次地从原数据集中选择N个样本点作为决策树的训练样本。 对于...

    2016-03-26 21:27
    713
  • 机器学习:多分类的logistic回归

    Multi-Class Logistic(多分类的Logistic问题) 它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说...

    2016-03-26 21:41
    5701
  • 机器学习:梯度Boost决策树

    Gradient Boost Decision Tree GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。 又称作:MART(Multiple Additive...

    2016-03-26 21:54
    887
  • 机器学习:贝叶斯网络入门

    贝叶斯理论是处理不确定性信息的重要工具。作为一种基于概率的不确定性推理方法,贝叶斯网络在处理不确定信息的智能化系统中已得到了重要的应用,已成功地用于医疗诊断、统计决策、专家系统、学习预测等领域。它有几...

    2016-04-02 16:57
    1020
  • 贝叶斯网络:Netica的使用记录

    1. 节点的Name与Title区别。 name是根据IDname的命名规则,只能用字母开头,随后跟数组、下划线。不能出现空格或者发音。 Title突破了这一限制。系统首选Title,如果没有,用na...

    2016-04-05 13:55
    2117
  • 机器学习:金融领域的岗位需求

    1.蚂蚁金服招聘资深推荐算法工程师 岗位描述: 1、结合业务需要提出合适的算法解决方案,推动方案在业务系统中实现,构建实时化高并发系统,尤其是基于大规模用户行为,建立推荐系统。算法包括但不限于机器学...

    2016-04-06 17:18
    3081

img博客搬家
img撰写博客
img发布 Chat
img专家申请
img意见反馈
img返回顶部