博客专栏  >  综合   >  深度学习之为什么系列

深度学习之为什么系列

学习过程中,要知其然更要知其所以然,这样才不至于囫囵吞枣。这里主要从原因出发,对深度学习中的一些概念进行思考。

关注
5 已关注
7篇博文
  • 深度学习相关论文阅读

    目标检测OverFeat文章:《OverFeat: Integrated Recognition, Localization and Detection using Convolutional Net...

    2017-05-07 10:40
    932
  • 为什么会出现Batch Normalization层

    训练模型时的收敛速度问题众所周知,模型训练需要使用高性能的GPU,还要花费大量的训练时间。除了数据量大及模型复杂等硬性因素外,数据分布的不断变化使得我们必须使用较小的学习率、较好的权重初值和不容易饱和...

    2017-04-21 16:36
    838
  • 提升深度学习模型表现的技巧

    本文是对提升深度学习表现的一些方法总结,主要来自于,也借鉴了PPT的部分思想。Data Augmentation增加训练数据几何变换图像翻转(flipping)、剪切(crop)、缩放(scale)、...

    2017-01-16 21:06
    962
  • 经典卷积神经网络介绍

    AlexNet 2012年,Hinton的学生Alex Krizhevsky提出了深度卷积神经网络模型AlexNet,获得当年ILSVRC(Image Large Scale Visual Reco...

    2017-04-22 19:08
    886
  • 为什么使用卷积层替代CNN末尾的全连接层

    原本CNN网络的经典结构是: 卷积层——>池化层——>……——>全连接层FCN的出现为什么要把CNN网络最后的全连接层特换为卷积层?或者换句话说这样会带来什么好处呢? 1. 首先,说一下卷积层和全...

    2017-04-16 11:32
    2995
  • 为什么“Pretrained+Fine-tuning”

    Deep Learning或者说CNN在图像识别这一领域取得了巨大的进步,那么自然我们就想将CNN应用到我们自己的数据集上,但这时通常就会面临一个问题:通常我们的dataset都不会特别大,一般不会超...

    2017-04-13 11:43
    743
  • 为什么“卷积”神经网络

    一直在接触卷积神经网络,今天就说一下为什么会有卷积,卷积会带来什么好处和CNN中如何使用卷积。为什么会有卷积(这里主要解释下卷积具有什么意义,为什么人们会想到卷积。有些人一提到卷积可能首先想起来的是局...

    2017-04-12 22:40
    1092
img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部