博客专栏  >  综合   >  深度学习与计算机视觉

深度学习与计算机视觉

开始深度学习与计算机视觉的学习有一段时间了,这中间看了一些视频课程,比如斯坦福大学的《深度学习与计算机视觉》,小象学院的《基于深度学习的计算机视觉》,IBM中国研究院的认知计算系列,打算用学习笔记的形式记录下这段时间以及之后的学习内容。

关注
6 已关注
9篇博文
  • 理解ResNet结构与TensorFlow代码分析

    该博客主要以TensorFlow提供的ResNet代码为主,但是我并不想把它称之为代码解析,因为代码和方法,实践和理论总是缺一不可。 TensorFlow的github地址,其中:resnet_mo...

    2017-07-21 01:18
    1243
  • 如何理解卷积神经网络中的1*1卷积

    我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,...

    2017-07-10 14:44
    883
  • 如何理解卷积神经网络中的权值共享

    权值共享这个词最开始其实是由LeNet5模型提出来,在1998年,LeCun发布了LeNet网络架构,就是下面这个: 虽然现在大多数的说法是2012年的AlexNet网络是深度学习的开端,但是C...

    2017-06-23 19:53
    1368
  • 理解交叉熵作为损失函数在神经网络中的作用

    交叉熵的作用通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便...

    2017-06-18 15:59
    1455
  • 理解深层神经网络中的迁移学习及TensorFlow实现

    什么是迁移学习在深度学习中,所谓的迁移学习是将一个问题A上训练好的模型通过简单的调整使其适应一个新的问题B。在实际使用中,往往是完成问题A的训练出的模型有更完善的数据,而问题B的数据量偏小。而调整的过...

    2017-06-17 22:04
    1135
  • 从AlexNet理解卷积神经网络的一般结构

    2012年AlexNet在ImageNet大赛上一举夺魁,开启了深度学习的时代,虽然后来大量比AlexNet更快速更准确的卷积神经网络结构相继出现,但是AlexNet作为开创者依旧有着很多值得学习参考...

    2017-06-04 17:58
    2020
  • 理解激活函数在神经网络模型构建中的作用

    什么是激活函数在生物学家研究大脑神经元工作机理时,发现如果一个神经元开始工作时,该神经元是一种被激活的状态,我想着大概就是为什么神经网络模型中有一个单元叫做激活函数。 那么什么是激活函数呢,我们...

    2017-06-01 12:02
    1337
  • 深度学习与机器学习中开源图片数据库汇总

    数据的准备工作是训练模型前的必要工作,显然这也是非常耗时的,所以在入门阶段我们完全可以用现有的开源图片库快速完成前期的准备工作:ImageNetImageNet是根据WordNet层次结构(目前只有名...

    2017-05-08 16:26
    1243
  • 浅谈神经网络发展史:从莫克罗-彼特氏神经模型到深层神经网络

    2016年,随着AlphaGo战胜了李世石,人工智能与深度学习达到了一个空前火热的状态。很多人也是第一次开始接触到了深度神经网络这个概念,但是其实神经网络的历史可以追溯到1943年,1943年的时候,...

    2017-05-21 12:58
    1343

机器学习
1714701

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部