博客专栏  >  综合   >  人工智能之机器学习篇

人工智能之机器学习篇

如果你是一个机器学习的爱好者,并且乐意于开始了解机器学习领域的相关知识,我希望,你可以在我的文章中找到有用的资料。

关注
6 已关注
22篇博文
  • PageRank

    PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由[1] 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry ...

    2017-05-16 22:40
    381
  • 数据挖掘十大经典算法--CART: 分类与回归树

    一、决策树的类型  在数据挖掘中,决策树主要有两种类型: 分类树 的输出是样本的类标。 回归树 的输出是一个实数 (例如房子的价格,病人呆在医院的时间等)。 术语分类和回归树 (CART) 包含了...

    2014-05-02 13:15
    33220
  • 朴素贝叶斯分类器

    贝叶斯定理 贝叶斯定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:       表...

    2014-04-03 19:26
    2609
  • 数据挖掘十大算法--K近邻算法

    k-近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法...

    2014-04-17 17:33
    8897
  • 数据挖掘算法学习(八)Adaboost算法

    Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

    2014-10-24 11:53
    3723
  • 数据挖掘十大算法----EM算法(最大期望算法)

    概念 在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。...

    2014-04-14 20:48
    8822
  • 数据挖掘十大算法--Apriori算法

    一、Apriori 算法概述 Apriori 算法是一种最有影响力的挖掘布尔关联规则的频繁项集的 算法,它是由Rakesh Agrawal 和RamakrishnanSkrikant 提出的。它使用...

    2014-04-30 20:32
    4432
  • 数据挖掘学习笔记--决策树C4.5

    在网上和教材上也看了有很多数据挖掘方面的很多知识,自己也学习很多,就准备把自己学习和别人分享的结合去总结下,以备以后自己回头看,看别人总还是比不上自己写点,及时有些不懂或者是没有必要。 定义:分类树(...

    2014-03-23 11:56
    3505
  • 数据挖掘十大算法--K-均值聚类算法

    一、相异度计算  在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能...

    2014-04-24 12:16
    4756
  • 机器学习与数据挖掘-支持向量机(SVM)(一)

    最近在看斯坦福大学的机器学习的公开课,

    2014-05-02 21:32
    3368
  • 支持向量机(SVM)(二)-- 拉格朗日对偶(Lagrange duality)

    简介: 1、在之前我们把要寻找最优的分割超平面的问题转化为带有一系列不等式约束的优化问题。这个最优化问题被称作原问题。我们不会直接解它,而是把它转化为对偶问题进行解决。 2、为了使问题变得易于处理,我...

    2014-05-07 16:31
    4024
  • 支持向量机(SVM)(三)-- 最优间隔分类器(optimal margin classifier)

    在之前为了寻找最有分类器,我们提出了如下优化问题: 在这里我们可以把约束条件改写成如下: 首先我们看下面的图示: 很显然我们可以看出实线是最大间隔超平面,假设×号的是正例,圆圈的是负...

    2014-05-08 18:00
    1603
  • 支持向量机(四)-- 核函数

    一、核函数的引入 问题1: SVM显然是线性分类器,但数据如果根本就线性不可分怎么办? 解决方案1: 数据在原始空间(称为输入空间)线性不可分,但是映射到高维空间(称为特征空间)后很可能就线性可分了...

    2014-05-10 20:58
    2497
  • 支持向量机(SVM)(五)-- SMO算法详解

    一、我们先回顾下SVM问题。 A、线性可分问题 1、SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维。在新的维上,搜索最佳分离超平面,两个类的数...

    2014-05-21 20:41
    4153
  • 有监督学习和无监督学习的区别

    机器学习的常用方法,主要分为有监督学习(supervised learning)和无监督学习(unsupervised learning)。监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据...

    2016-08-16 20:45
    4455
  • 决策树学习笔记整理

    本文目的 最近一段时间在Coursera上学习Data Analysis,里面有个assignment涉及到了决策树,所以参考了一些决策树方面的资料,现在将学习过程的笔记整理记录于此,作为备忘。...

    2016-08-24 13:08
    660
  • 支持向量机:Duality

    在之前关于 support vector 的推导中,我们提到了 dual ,这里再来补充一点相关的知识。这套理论不仅适用于 SVM 的优化问题,而是对于所有带约束的优化问题都适用的,是优化理论中的一个...

    2017-05-07 21:57
    139
  • 使用sklearn做单机特征工程

    1 特征工程是什么?   有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从...

    2017-03-19 21:52
    295
  • EM算法学习笔记与三硬币模型推导

    最近接触了pLSA模型,由于该模型中引入了主题作为隐变量,所以需要使用期望最大化(Expectation Maximization)算法求解。       本文简述了以下内容:      ...

    2017-03-21 12:45
    536
  • scikit-learn中PCA的使用方法

    1、函数原型及参数说明 [python] view plain copy sklearn.decomposition.PCA(n_components=...

    2017-03-21 16:27
    346

img博客搬家
img撰写博客
img专家申请
img意见反馈
img返回顶部